EI、Scopus 收录
中文核心期刊

基于单元破裂的岩石裂纹扩展模拟方法

王杰, 李世海, 张青波

王杰, 李世海, 张青波. 基于单元破裂的岩石裂纹扩展模拟方法[J]. 力学学报, 2015, 47(1): 105-118. DOI: 10.6052/0459-1879-14-239
引用本文: 王杰, 李世海, 张青波. 基于单元破裂的岩石裂纹扩展模拟方法[J]. 力学学报, 2015, 47(1): 105-118. DOI: 10.6052/0459-1879-14-239
Wang Jie, Li Sihai, Zhang Qingbo. SIMULATION OF CRACK PROPAGATION OF ROCK BASED ON SPLITTING ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 105-118. DOI: 10.6052/0459-1879-14-239
Citation: Wang Jie, Li Sihai, Zhang Qingbo. SIMULATION OF CRACK PROPAGATION OF ROCK BASED ON SPLITTING ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 105-118. DOI: 10.6052/0459-1879-14-239
王杰, 李世海, 张青波. 基于单元破裂的岩石裂纹扩展模拟方法[J]. 力学学报, 2015, 47(1): 105-118. CSTR: 32045.14.0459-1879-14-239
引用本文: 王杰, 李世海, 张青波. 基于单元破裂的岩石裂纹扩展模拟方法[J]. 力学学报, 2015, 47(1): 105-118. CSTR: 32045.14.0459-1879-14-239
Wang Jie, Li Sihai, Zhang Qingbo. SIMULATION OF CRACK PROPAGATION OF ROCK BASED ON SPLITTING ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 105-118. CSTR: 32045.14.0459-1879-14-239
Citation: Wang Jie, Li Sihai, Zhang Qingbo. SIMULATION OF CRACK PROPAGATION OF ROCK BASED ON SPLITTING ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 105-118. CSTR: 32045.14.0459-1879-14-239

基于单元破裂的岩石裂纹扩展模拟方法

基金项目: 中国科学院战略性先导科技专项(B类)(XDB10030303)和国家自然科学基金青年基金(11302230, 11302229)资助项目.
详细信息
    作者简介:

    李世海, 研究员, 主要研究方向: 非连续介质力学及其应用.E-mail: shli@imech.ac.cn

  • 中图分类号: TU452

SIMULATION OF CRACK PROPAGATION OF ROCK BASED ON SPLITTING ELEMENTS

Funds: The project was supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB10030303) and Youth Science Fund of the National Natural Science Foundation of China (11302230, 11302229).
  • 摘要: 传统离散元方法在处理破裂问题时, 采用界面上的准则进行判断, 裂纹只能沿着单元边界扩展. 当物理问题存在宏观或微观裂隙时, 在界面上应用准则具有其合理性; 而裂纹沿着单元边界扩展, 使得裂纹路径受网格影响较大, 扩展方向受到限制. 针对上述情况, 可以基于单元破裂的方式, 构建连续- 非连续单元法, 并应用于岩石裂纹扩展问题的模拟. 该方法在连续计算时, 将单元离散为具有物理意义的弹簧系统, 在局部坐标系下由弹簧特征长度、面积求解单元变形和应力, 通过更新局部坐标系和弹簧特征量, 可进一步计算块体大位移、大转动, 连续问题计算结果与有限元一致, 同时提高了计算效率. 在此基础上, 引入最大拉应力与莫尔—库伦的复合准则, 判断单元破裂状态和破裂方向, 并采用局部块体切割的方式, 在单元内形成初始裂纹. 裂纹两侧相应增加新的计算节点, 同时引入内聚力模型描述裂纹两侧的法向、切向作用与张开度及滑移变形之间的关系. 按此方式, 裂纹尖端处的扩展路径可穿过单元内部和单元边界, 在扩展方向的选取上更为准确. 最后, 通过三点弯曲梁、单切口平板拉伸、双切口试样等典型数值试验, 模拟裂纹在拉伸、压剪等各种应力状态下的扩展问题, 并对岩石单轴压缩试验的破坏过程进行模拟, 分析裂纹形成与应力—应变曲线各阶段之间的对应关系. 结果表明: 连续—非连续单元法通过单元内部破裂的方式, 可以显示模拟裂纹萌生、扩展、贯通直至形成宏观裂缝的过程.
    Abstract: In conventional discrete element methods, fracture is judged by criterion of interface and cracks can only propagate along the boundary of elements. However, criterion of interface can only be used rationally on the condition that macro or micro fractures exist in physical problems. The path and direction of crack will be limited severely by the initial mesh when crack propagates along the boundary. Given these two limitations, a continuous-discontinuous element method is proposed and applied to simulate the progressing cracking problem of rocks. Specifically, criterion is applied on element and intra-element fracture will form. In continuous calculation, element is denoted by a discrete spring system which has specific physical meaning and its deformation and stress are calculated by the characteristic length and area of springs in local coordinate system. The continuous calculation results demonstrate a satisfactory agreement with the traditional finite element method. By updating spring information and local coordinate system, large displacement and rotation of elements can be calculated directly. In addition, Mohr-Coulomb criterion is implemented into the new model to specify the failure state and fracture direction, and intact element will be divided into two elements by means of cutting block. In this way, fracture may be inserted along the boundary of elements or within intact element. A cohesive zone model is employed to simulate the fracture and the elements on two sides of the crack are set to two different nodes at the same time, causing the displacement to be discontinuous. Finally, from numerical results of several intense examples with crack propagation, this method can satisfactorily simulate the progressing cracking problems under tensile, compressive and shear conditions, and its rationality is approved. The continuous-discontinuous element method has been shown to be insensitive to quality of mesh and thus has the potential to simulate crack initiation and propagation.
  • 张楚汉. 论岩石、混凝土离散-接触-断裂分析. 岩石力学与工程学报, 2008, 27(2): 217-235 (Zhang Chuhan. Discrete-contact-fracture analysis of rock and concrete. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 217-235 (in Chinese))
    Swenson DV, Ingraffea AR. Modeling mixed-mode dynamic crack propagation using finite elements: Theory and applications. Computational Mechanics, 1988, 3: 381-397
    Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620  3.0.CO;2-S">
    Ke TC. Simulated testing of two dimensional heterogeneous and discontinuous rock masses using discontinuous deformation analysis. [PhD Thesis]. Berkeley: University of California, 1993
    Shi GH. Manifold method. In: Salami MR and Banks D eds. Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulation of Discontinuous Media. Berkeley, California, 1996. 52-204
    Shi GH. Numerical manifold method. In: Li JC, Wang CY, Sheng J eds. Proceedings of the First International Conference on Analysis of Discontinuous Deformation (ICADD-1). Chungli, Taiwan, China, 1995. 187-222
    刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟. 力学学报, 2014, 46(4): 582-590 (Liu Feng, Zheng Hong, Li Chunguang. The NMM-based EFG method and simulation of crack propagation. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582-590 (in Chinese))
    杨永涛, 徐栋栋, 郑宏. 动载下裂纹应力强度因子计算的数值流形元法. 力学学报, 2014, 46(5): 730-738 (Yang Yongtao, Xu Dongdong, Zheng Hong. Evaluation on stress intensity factor of crack under dynamic load using numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738 (in Chinese))
    Munjiza A, Owen DRJ, Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids. Engineering Computations, 1995, 12(2): 145-174
    Munjiza A. The Combined Finite-Discrete Element Method. New York: John Wiley and Sons, 2004: 277-290
    Owen DRJ, Feng YT, De Souza Neto EA, et al. The modeling of multi-fracturing solids and particulate media. International Journal for Numerical Methods in Engineering, 2004, 60(efeq1): 317-339
    Li SH, Zhang YN. Feng C. A spring system equivalent to continuum model. In: The Proc. of The Fifth International Conference on Discrete Element Methods. London, 2010. 75-85
    冯春, 李世海, 姚再兴. 基于连续介质力学的块体单元离散弹簧法研究. 岩石力学与工程学报, 2010, 29(增刊1): 2690-2704 (Feng Chun, Li Shihai, Yao Zaixing. Study of block-discrete-spring method based on continuum mechanics. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Supp.1): 2690-2704 (in Chinese))
    王杰, 李世海, 周东, 等. 模拟岩石破裂过程的块体单元离散弹簧模型. 岩土力学, 2013, 34(8): 2355-2362 (Wang Jie, Li Shihai, Zhou Dong, et al. A block-discrete-spring model to simulate failure process of rock. Rock and Soil Mechanics, 2013, 34(8): 2355-2362 (in Chinese))
    常晓林, 胡超, 马刚, 等. 模拟岩石失效全过程的连续-非连续变形体离散元方法及应用. 岩石力学与工程学报, 2011, 30(10): 2004-2011 (Chang Xiaolin, Hu Chao, Ma Gang, et al. Continuous-discontinuous deformable discrete element method to simulate the whole failure process of rock masses and application. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2004-2011 (in Chinese))
    马刚, 周创兵, 常晓林, 等. 岩石破坏全过程的连续-离散耦合分析方法. 岩石力学与工程学报, 2011, 30(12): 2444-2455 (Ma Gang, Hu Chao, Chang Xiaolin, et al. Continuous-discontinuous coupling analysis for whole failure process of rock. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2444-2455 (in Chinese))
    侯艳丽, 周元德, 张楚汉. 用3D离散元实现I/II型拉剪混凝土断裂的模拟. 工程力学, 2007, 24(3): 1-7 (Hou Yanli, Zhou Yuande, Zhang Chuhan. I/II tensile shear mixed mode fracture simulation by 3D discrete element method. Engineering Mechanics, 2007, 24(3): 1-7 (in Chinese))
    张青波, 李世海, 冯春. 四节点矩形弹簧元及其特性研究. 岩土力学, 2012, 33(11): 3497-3502 (Zhang Qingbo, Li Shihai, Feng Chun. Study of four-node rectangular spring element and its properties. Rock and Soil Mechanics, 2012, 33(11): 3497-3502 (in Chinese))
    张青波, 李世海, 冯春, 等. 基于SEM的可变形块体离散元法研究. 岩土力学, 2013, 34(8): 2385-2392 (Zhang Qingbo, Li Shihai, Feng Chun, et al. Study of deformable block discrete element method based on SEM. Rock and Soil Mechanics, 2013, 34(8): 2385-2392 (in Chinese))
    张楚汉, 金峰. 岩石和混凝土离散-接触-断裂分析. 北京: 清华大学出版社, 2008 (Zhang Chuhan, Jin Feng. Discrete-Contact-Fracture Analysis of Rock and Concrete. Beijing: Tsinghua University Press, 2008 (in Chinese))
    Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773-782
    Wells GN, Sluys LJ. A new method for modeling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering, 2001, 50(12): 2667-2682
    Carpinteri A, Colombo G. Numerical analysis of catastrophic softening behavior (snap-back instability). Computer & Structures, 1989, 31(4): 607-636
    Ning YJ, An XM, Ma GW. Footwall slope stability analysis with the numerical manifold method. International Journal of Rock Mechanics & Mining Sciences, 2001, 48(6): 964-975
    Nooru-Mohamed MB. Mixed-mode fracture of concrete: An experimental approach. [PhD Thesis]. Delft: University of Technology, 1992
    Oliver J, Huespe AE, Samaniego E, et al. Continuum approach to the numerical simulation of material failure in concrete. International Journal for Numerical and Analytical Methods in Geomechanics, 2004: 28(7-8): 609-632
    Zi G, Rabczuk T, Wall W. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367-382
计量
  • 文章访问数:  1392
  • HTML全文浏览量:  107
  • PDF下载量:  1733
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-17
  • 修回日期:  2014-10-06
  • 刊出日期:  2015-01-17

目录

    /

    返回文章
    返回