EI、Scopus 收录
中文核心期刊

海冰与自升式海洋平台相互作用GPU离散元模拟

狄少丞, 季顺迎

狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4): 561-571. DOI: 10.6052/0459-1879-13-400
引用本文: 狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4): 561-571. DOI: 10.6052/0459-1879-13-400
Di Shaocheng, Ji Shunying. GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 561-571. DOI: 10.6052/0459-1879-13-400
Citation: Di Shaocheng, Ji Shunying. GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 561-571. DOI: 10.6052/0459-1879-13-400
狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4): 561-571. CSTR: 32045.14.0459-1879-13-400
引用本文: 狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4): 561-571. CSTR: 32045.14.0459-1879-13-400
Di Shaocheng, Ji Shunying. GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 561-571. CSTR: 32045.14.0459-1879-13-400
Citation: Di Shaocheng, Ji Shunying. GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 561-571. CSTR: 32045.14.0459-1879-13-400

海冰与自升式海洋平台相互作用GPU离散元模拟

基金项目: 国家海洋公益性行业科研专项经费(201105016,201205007),国家自然科学基金(41176012)和高等学校博士学科点专项科研基金(20130041110010)资助项目.
详细信息
    作者简介:

    季顺迎,教授,主要研究方向:颗粒材料计算力学及工程应用.E-mail:jisy@dlut.edu.cn

  • 中图分类号: P751;P731.15

GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE

Funds: The project was supported by the Special Funding for National Marine Commonwealth Industry of China (201105016, 201205007), the National Natural Science Foundation of China (41176012) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130041110010).
  • 摘要: 在海冰与自升式海洋平台结构的相互作用过程中,冰载荷是影响平台结构振动响应和疲劳寿命的重要因素. 采用具有粘接-破碎效应的离散元模型,可对海冰与自升式海洋平台结构作用中的海冰破碎特征及相应冰载荷进行数值分析. 针对自升式海洋平台的多桩腿结构特性及其冰载荷离散元分析的大规模计算需求,建立了基于GPU 的并行算法并开发了相应的计算程序. 为实现离散元分析的高效计算,采用网格排序方法创建单元邻居列表,以快速确定海冰单元间及其与平台结构间的接触模式和作用力. 此外,还发展了球体单元与圆柱形结构在不同接触形式下的计算模型. 为检验该离散元模型的有效性,对渤海锥体海洋平台结构的作用过程进行了计算,并与现场实测冰力数据进行了对比验证. 在此基础上对多桩腿自升式平台结构的冰载荷进行了离散元分析,获得了海冰的破坏特性,确定了不同桩腿上的冰力时程. 该模型可进一步应用于不同类型海洋结构的冰载荷分析,为冰区海洋平台的结构设计和现役平台结构的疲劳分析提供参考依据.
    Abstract: During the interaction between sea ice and jack-up platform, the ice load is the key factor affecting vibration response and fatigue life of the structure. In this study, a discrete element method (DEM) with bonding-breaking function is developed to simulate the breakage characteristics of ice cover and the relative ice load on platform structure. According to the demand in the large scale DEM simulation between the sea ice and the jack-up platform structure with multi-legs, a parallel algorithm with high efficiency is established based on GPU (Graphical Processing Units) technique. In this algorithm, the element neighbor lists are generated with the sorting approach of cell index. The contact modes and contact forces between element-element and element-structure are determined. Meanwhile, the global ice load on jack-up structure can also be obtained. Moreover, the contact models between spherical element and cylindrical structure are also developed to determine the interaction between ice cover and jack-up structure. To validate this GPU-based DEM, the interaction between sea ice and conical jacket offshore structure is simulated and compared well with the field data in the Bohai Sea. Moreover, the ice loads on jack-up structure with multi-legs are simulated. The breakage characteristics of sea ice during the dynamic interaction and the ice loads on each structure legs are obtained. This GPU-based DEM can be applied to determine the ice loads on different offshore structures for ice-resisted structure design and ice-induced structure fatigue analysis.
  • Sodhi D. Crushing failure during ice-structure interaction. Engineering Fracture Mechanics, 2001, 68: 1889-1921
    Palmer A, Yue QJ, Guo FW. Ice-induced vibrations and scaling. Cold Regions Science and Technology, 2010, 60: 189-192
    Huang Y, Ma J, Tian Y. Model tests of four-legged jacket platforms in ice: Part 1. Model tests and results. Cold Regions Science and Technology, 2013, 95: 74-85
    Moslet P O. Medium scale ice-structure interaction. Cold Regions Science and Technology, 2008, 54: 143-152
    Wang Y, Yue Q, Guo F, et al. Performance evaluation of a new ice-resistant jacket platform based on field monitoring. Cold Regions Science and Technology, 2012, 71: 44-53
    Timco GW, Johnston M. Ice loads on the caisson structures in the Canadian Beaufort Sea. Cold Regions Science and Technology, 2004, 38: 185-209
    Jordaan IJ. Mechanics of ice-structure interaction. Engineering Fracture Mechanics, 2001, 68: 1923-1960
    Kärnä T, Kamesaki K, Tsukuda H. A numerical model for dynamic ice-structure interaction. Computers and Structures, 1999, 72: 645-658
    王刚, 武文华, 岳前进. 锥体接触宽度对冰排弯曲破坏模式影响的有限元分析. 工程力学, 2008, 25(1): 235-240 (Wang Gang, Wu Wenhua, Yue Qianjin. FEM analysis on ice-bending failure mode with width effect of ice-cone interaction. Engineering Mechanics, 2008, 25(1): 235-240 (in Chinese))
    Gagnon R E. A numerical model of ice crushing using a foam analogue. Cold Regions Science and Technology, 2011, 65: 335-350
    Kuutti J, Kolari K, Marjavaara P. Simulation of ice crushing experiments with cohesive surface methodology. Cold Regions Science and Technology, 2013, 92: 17-28
    Selvadurai APS, Sepehr K. Two-dimensional discrete element simulations of ice-structure interacion. International Journal of Solids and Structures, 1999, 36: 4919-4940
    Polojärvi A, Tuhkuri J. 3D discrete numerical modelling of ridge keel punch through tests. Cold Regions Science and Technology, 2009, 56: 18-29
    Paavilainen J, Tuhkuri J, Polojärvi A. 2D numerical simulations of ice rubble formation process against an inclined structure. Cold Regions Science and Technology, 2011, 68: 20-34
    Walther JH, Sbalzarini IF. Large-scale parallel discrete element simulations of granular flow. International Journal for Computer-Aided Engineering and Software, 2009, 26(6): 688-697
    陈飞国, 葛蔚, 李静海. 复杂多相流动分子动力学模拟在GPU上的实现.中国科学化学, 2008, 38(12): 1120-1128 (Chen Feiguo, Ge Wei, Li Jinghai. The achievement of molecular dynamics simulation of complex multiphase flow based on GPU. Scientia Sinica Chimica, 2008, 38(12): 1120-1128 (in Chinese))
    夏健明, 魏德敏. 图形处理器在大规模力学问题计算中的应用进展. 力学进展, 2010, 40(1): 57-63 (Xia Jianming, Wei Demin. Advances in graphics processing units' applications to the computation of large-scale mechanical problems. Advances in Mechanics, 2010, 40(1): 57-63 (in Chinese))
    张舒, 褚艳利. GPU高性能运算之CUDA. 北京: 中国水利水电出版社, 2009 (Zhang Shu, Chu Yanli. CUDA of GPU High Performance Computing. Beijing: China Water & Power Press, 2009 (in Chinese))
    Pazouki A, Mazhar H, Negrut. Parallel collision detection of ellipsoids with applications in large scale multibody dynamics. Mathematics and Computers in Simulation, 2012, 82: 879-894
    Radeke CA, Glasser BJ, Khinast JG. Large-scale power mixer simulations using massively parallel GPU architectures. Chemical Engineering Science, 2010, 65: 6435-6442
    Longmore J, Marais P, Kuttel MM. Towards realistic and interactive sand simulation: A GPU-based framework. Powder Technology, 2013, 235: 983-1000
    季顺迎, 狄少丞, 李正等. 海冰与直立结构相互作用的离散单元数值模拟.工程力学, 2013, 30(1): 463-469 (Ji Shunying, Di Shaocheng, Li Zheng, et al. Discrete element modelling of interaction between sea ice and vertical offshore structures. Engineering Mechanics, 2013, 30(1): 463-469 (in Chinese))
    Scholtes L, Donze FV. Modelling progressive failure in fractured rock masses using a 3D discrete element method. International Journal of Rock Mechanics & Mining Sciences, 2012, 52: 18-30
    Onate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 3087-3128
    Guo F, Yue Q, Xu N. Model test for studying ice forces on Jcak-up structure. In: Proceedings of the Twentieth International Offshore and Polar Engineering Conference, Beijing, 2010
    Nishiura D, Sakaguchi H. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors. Journal of Computational Physics, 2011, 230: 1923-1938
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-27
  • 修回日期:  2014-01-02
  • 刊出日期:  2014-07-17

目录

    /

    返回文章
    返回