EI、Scopus 收录
中文核心期刊

气泡多周期运动时引起的流场压力与速度

李帅, 张阿漫, 韩蕊

李帅, 张阿漫, 韩蕊. 气泡多周期运动时引起的流场压力与速度[J]. 力学学报, 2014, 46(4): 533-543. DOI: 10.6052/0459-1879-13-321
引用本文: 李帅, 张阿漫, 韩蕊. 气泡多周期运动时引起的流场压力与速度[J]. 力学学报, 2014, 46(4): 533-543. DOI: 10.6052/0459-1879-13-321
Li Shuai, Zhang Aman, Han Rui. NUMERICAL ANALYSIS ON THE VELOCITY AND PRESSURE FIELDS INDUCED BYMULTI-OSCILLATIONS OF AN UNDERWATER EXPLOSION BUBBLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 533-543. DOI: 10.6052/0459-1879-13-321
Citation: Li Shuai, Zhang Aman, Han Rui. NUMERICAL ANALYSIS ON THE VELOCITY AND PRESSURE FIELDS INDUCED BYMULTI-OSCILLATIONS OF AN UNDERWATER EXPLOSION BUBBLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 533-543. DOI: 10.6052/0459-1879-13-321
李帅, 张阿漫, 韩蕊. 气泡多周期运动时引起的流场压力与速度[J]. 力学学报, 2014, 46(4): 533-543. CSTR: 32045.14.0459-1879-13-321
引用本文: 李帅, 张阿漫, 韩蕊. 气泡多周期运动时引起的流场压力与速度[J]. 力学学报, 2014, 46(4): 533-543. CSTR: 32045.14.0459-1879-13-321
Li Shuai, Zhang Aman, Han Rui. NUMERICAL ANALYSIS ON THE VELOCITY AND PRESSURE FIELDS INDUCED BYMULTI-OSCILLATIONS OF AN UNDERWATER EXPLOSION BUBBLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 533-543. CSTR: 32045.14.0459-1879-13-321
Citation: Li Shuai, Zhang Aman, Han Rui. NUMERICAL ANALYSIS ON THE VELOCITY AND PRESSURE FIELDS INDUCED BYMULTI-OSCILLATIONS OF AN UNDERWATER EXPLOSION BUBBLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 533-543. CSTR: 32045.14.0459-1879-13-321

气泡多周期运动时引起的流场压力与速度

基金项目: 优秀青年科学基金(51222904),国家自然科学基金(513790392),哈尔滨市科技创新人才专项和黑龙江省博士后科研启动金(LBH-Q11136)资助项目.
详细信息
    作者简介:

    张阿漫,教授,主要研究方向:水下爆炸,气泡动力学,流固耦合分析.E-mail:zhangaman@hrbeu.edu.cn

  • 中图分类号: O358

NUMERICAL ANALYSIS ON THE VELOCITY AND PRESSURE FIELDS INDUCED BYMULTI-OSCILLATIONS OF AN UNDERWATER EXPLOSION BUBBLE

Funds: The project was supported by Excellent Young Scientists Fund (51222904), the National Natural Science Foundation of China (513790392), the Harbin Science and Technology Foundation for Innovation Talents, and Scientific Initiation Fund for Post-doctors of Heilongjiang Province (LBH- Q11136).
  • 摘要: 假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.
    Abstract: The gas inside the underwater explosion bubble is assumed to undergo adiabatic expansion and compression. The water flow induced is assumed to be inviscid, irrotational and incompressible, which is simulated based on potential flow theory coupled with the boundary element method (BEM). Much attention was paid to the character of the pulsating pressure and the flow velocity, and the related theory and numerical method were given in detail. The validity and convergence of numerical model were confirmed by comparing the calculations with experimental and analytical results, so our BEM codes were used to simulate underwater explosion bubbles under different conditions. During the expansion phase of the bubble, the fluid pressure along the radius direction may first increase and then decrease. To simulate the subsequent motion after the bubble jet impact, a vortex ring was put inside the bubble, thus the flow field could be decomposed into two parts: an irrotational flow field and a vortex field. Besides, some numerical techniques were adopted to handle the topology of the bubble which made it possible to simulate multi-oscillations of bubbles. It's noted that there were two high-pressure regions formed around the top and the bottom of the toroidal bubble while its fast rise proceeded. It can also be found that the top region had a greater peak value, while the bottom region covered a larger area. Meanwhile, the flow velocity in the jet direction accelerated inside the toroidal bubble, but decelerated rapidly near the top of the bubble.
  • Cole RH. Underwater Explosion. Princeton: Princeton University Press, 1948
    Geers TL. Residual potential and approximation methods for three dimensional fluid-structure interaction problems. Journal of Acoustical Society of America, 1971, 49: 1505-1510
    Geers TL. Doubly asympotic approximation for transient motions of submerged structures. Acoustical Society of America, 1978, 64: 1500-1508
    黄晓明, 朱锡, 牟金磊等. 圆柱壳在水下爆炸作用下鞭状运动响应实验研究. 哈尔滨工程大学学报, 2010, 31(10):1278-1285 (Huang Xiaoming, Zhu Xi, Mu Jinlei, et al. Study on the whipping response of a stiffened cylindrical shell in an underwater explosion. Journal of Harbin Engineering University, 2010, 31(10):1278-1285 (in Chinese))
    Klaseboer E, Hung KC, Wang C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. Journal of Fluid Mechanics, 2005, 537: 387-413
    Blake JR, Taib BB, Doherty G, Transient cavities near boundaries. Part 1. Rigid boundary. Journal of Fluid Mechanics, 1986, 170: 479
    Li ZR, Sun L, Zong Z, et al. Some dynamical characteristics of a non-spherical bubble in proximity to a free-surface. Acta Mechanica Sinica, 2012, 61: 224702
    Best JP. The formulation of toroidal bubbles upon collapse of transient cavities. Journal of Fluid Mechanics, 1993, 251: 79-107
    蔡悦斌, 鲁传敬, 何友生. 瞬态空化泡演变过程的数值模拟. 应用力学学报. 1997, 14(2): 1-6 (Cai Yuebin, Lu Chuanjing, He Yousheng. Numerical simulation of the evolution of transient cavities. Chinese Journal of Applied Mechanics, 1997, 14(2): 1-6 (in Chinese))
    Lee M, Klaseboer E, Khoo BC. On the boundary integral method for the rebounding bubble. Journal of Fluid Mechanics, 2007, 570: 407-429
    Best JP. The rebound of toroidal bubbles. In: Blake JR, Boulton-Stone JM, Thomas NH. eds. Bubble Dynamics and Interface Phenomena. 1994: 405-412
    Wang QX, Yeo KS, Khoo BC, et al. Nonlinear interaction between gas bubble and free surface. Computational Fluids, 1996, 25(7): 607-628
    Wang QX, Blake JR. Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. Journal of Fluid Mechanics, 2010, 659: 191-224
    Rayleigh JW. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophy Magazine, 1917, 34: 94-98
    Zhang AM, Wang SP, Huang C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics. European Journal of Mechanics B/Fluid. 2013, 42: 69-91
    Zhang AM, Yang WS, Huang C, et al. Numerical simulation of column charge underwater explosion based on sph and bem combination. Computers and Fluids, 2013, 71: 169-178
    Newman JN. Marine Hydrodynamics. London: MIT Press, 1977
    Wang QX, Yeo KS, Khoo BC, et al. Strong interaction between a buoyancy bubble and a free surface. Theoretical Computational Fluid Dynamics, 1996, 8: 73-88
    戴遗山, 段文洋. 船舶在波浪中运动的势流理论. 北京: 国防工业出版社, 2008 (Dai YS, Duan WY. Potential Flow Theory of Ship Motions in Waves. Beijing: National Defense Industry Press, 2008)
    Wu GX, Hu ZZ. Simulation of non-linear interactions between waves and floating bodies through a finite-element-based numerical tank. Proceeding of Royal Society A, 2004, 460: 2797-2817
    Zhang AM, Ni BY, Song BY, et al. Numerical simulation of bubble breakup phenomena in a narrow flow field. Applied Mathematics and Mechanics, 2010, 31(4): 449-460
    Zhang YL, Yeo KS, Khoo BC, et al. 3D jet impact and toroidal bubbles. Journal of Computational Physics, 2001, 166: 336
    Wang QX, Blake JR. Non-spherical bubble dynamics in a compressible liquid. Part 2. Standing acoustic wave. Journal of Fluid Mechanics, 2011, 679: 559-581
    Wang QX. Underwater explosion bubble dynamics in a compressible liquid. Physics Fluids, 2013, 25: 072104
    张凌新,闻仲卿,邵雪明. 多泡相互作用对气泡溃灭的影响. 力学学报, 2013, 45(6): 861-867 (Zhang Lingxin, Wen Zhongqing, Shao Xueming. Investigation of bubble-bubble interaction effect during the collapse of multi-bubble system. Chinese Journal of Theoretical and Applied Mechani, 2013, 45(6): 861-867 (in Chinese))
    史冬岩,王志凯,张阿漫. 一种模拟气液两相流的格子波尔兹曼改进模型. 力学学报, 2014, 46(2): 224-233 (Shi Dongyan, Wang Zhikai, Zhang Aman. A novel lattice boltzmann model simulating gas-liquid two-phase flow. Chinese Journal of Theoretical and Applied Mechani, 2014, 46(2): 224-233 (in Chinese))
    王诗平,孙士丽,张阿漫等. 可压缩流场中气泡脉动数值模拟. 力学学报, 2012, 44(3): 513-519 (Wang Shiping, Sun Shili, Zhang Aman, et al. Numerical simulation of bubble dynamics in compressible fluid. Chinese Journal of Theoretical and Applied Mechani, 2012, 44(3): 513-519 (in Chinese))
计量
  • 文章访问数:  1462
  • HTML全文浏览量:  96
  • PDF下载量:  1307
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-29
  • 修回日期:  2013-12-13
  • 刊出日期:  2014-07-17

目录

    /

    返回文章
    返回