EI、Scopus 收录
中文核心期刊

受周期和白噪声激励的分段线性系统的吸引域与离出问题研究

孔琛, 刘先斌

孔琛, 刘先斌. 受周期和白噪声激励的分段线性系统的吸引域与离出问题研究[J]. 力学学报, 2014, 46(3): 447-456. DOI: 10.6052/0459-1879-13-300
引用本文: 孔琛, 刘先斌. 受周期和白噪声激励的分段线性系统的吸引域与离出问题研究[J]. 力学学报, 2014, 46(3): 447-456. DOI: 10.6052/0459-1879-13-300
Kong Chen, Liu Xianbin. RESEARCH FOR ATTRACTING REGION AND EXIT PROBLEM OF A PIECEWISE LINEAR SYSTEM UNDER PERIODIC AND WHITE NOISE EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 447-456. DOI: 10.6052/0459-1879-13-300
Citation: Kong Chen, Liu Xianbin. RESEARCH FOR ATTRACTING REGION AND EXIT PROBLEM OF A PIECEWISE LINEAR SYSTEM UNDER PERIODIC AND WHITE NOISE EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 447-456. DOI: 10.6052/0459-1879-13-300
孔琛, 刘先斌. 受周期和白噪声激励的分段线性系统的吸引域与离出问题研究[J]. 力学学报, 2014, 46(3): 447-456. CSTR: 32045.14.0459-1879-13-300
引用本文: 孔琛, 刘先斌. 受周期和白噪声激励的分段线性系统的吸引域与离出问题研究[J]. 力学学报, 2014, 46(3): 447-456. CSTR: 32045.14.0459-1879-13-300
Kong Chen, Liu Xianbin. RESEARCH FOR ATTRACTING REGION AND EXIT PROBLEM OF A PIECEWISE LINEAR SYSTEM UNDER PERIODIC AND WHITE NOISE EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 447-456. CSTR: 32045.14.0459-1879-13-300
Citation: Kong Chen, Liu Xianbin. RESEARCH FOR ATTRACTING REGION AND EXIT PROBLEM OF A PIECEWISE LINEAR SYSTEM UNDER PERIODIC AND WHITE NOISE EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 447-456. CSTR: 32045.14.0459-1879-13-300

受周期和白噪声激励的分段线性系统的吸引域与离出问题研究

基金项目: 国家自然科学基金(11072107,91016022,11232007)、机械结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题(0113G01)和江苏高校优势学科建设工程资助项目.
详细信息
    作者简介:

    刘先斌,教授,主要研究方向:动力学与控制,随机分岔,随机动力学,随机振动.E-mail:xbliu@nuaa.edu.cn

  • 中图分类号: O324

RESEARCH FOR ATTRACTING REGION AND EXIT PROBLEM OF A PIECEWISE LINEAR SYSTEM UNDER PERIODIC AND WHITE NOISE EXCITATIONS

Funds: The project was supported by the National Natural Science Foundation of China (11072107,91016022,11232007), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics)(0113G01)and A ProjectFunded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
  • 摘要: 离出行为是随机非线性系统的重要现象之一,而离出问题是除随机动力系统理论以外考察随机非线性系统随机稳定性的另一种重要的方法.分段线性系统是一个经典的非线性动力学模型,受随机激励后成为随机系统,但并不是严格的随机动力系统,因而此时随机动力系统理论也不适用.为了研究同时受周期和白噪声激励的分段线性系统,首先使用Poincaré截面模拟其在无噪声时确定性的动力学行为,然后使用Monte Carlo模拟对其在白噪声激励下的离出行为进行了数值仿真分析.其次,为了考察离出问题中的重要参数,系统的平均首次通过时间(mean first-passage time,MFPT),使用van der Pol变换,随机平均法,奇异摄动法和射线方法进行了量化计算.通过对理论结果与模拟结果的对比分析,得到结论:当系统吸引子对应的吸引域边界出现碎片化时,理论结果与模拟结果的误差极大;而当吸引域边界足够光滑的以后,理论结果与模拟结果才会相当吻合.
    Abstract: Exit behaviour is one of the significant phenomena of stochastic nonlinear systems, other than the theory of random dynamical system, the exit problem is an another way to investigate the stochastic stability for a stochastic nonlinear system. The piecewise linear system is a classical model in non-linear dynamics, for which, the stochastic excitation leads to a stochastic system, not a rigorous random dynamical system, and then the theory of random dynamical system is not applicable. Thus, in order to learn the stochastic dynamical behaviours for a piecewise linear system that is under a periodic and a Gaussian white noise excitations, its exit behaviour is examined in the present paper via investigating the mean first-passage time which is one of the most important quantities within exit problem and is also used to quantify the global stability of a stochastic system. Some numerical experiments are designed to investigate the deterministic dynamical behaviors in the case that only the periodic excitations are added, and based upon the Monte Carlo simulation, the other numerical procedures are designed to reveal the exit behavior of the system that is under both periodic and Gaussian white noise excitations. In order to obtain the analytical expression of the mean first-passage time, van der Pol transition and stochastic averaging method are firstly applied to simplify the system, then singular perturbation method and ray method are used to quantify the mean first-passage time. Comparing the analytical results with the analog ones, we conclude that if the attracting boundary is fractal, the two results are far different; otherwise if the attracting boundary is smooth enough, the two results match very well.
  • 刘先斌,陈虬,陈大鹏. 非线性随机动力学系统的稳定性和分岔研究.力学进展,1996,26:437-452 (Liu Xianbin, Chen Qiu, Chen Dapeng. The researches on the stability and bifurcation of nonlinear stochastic dynamical systems. Advances in Mechanics, 1996, 26: 437-452 (in Chinese))
    Roy RV. Large deviation theory, weak-noise asymptotics, and first-passage problems: review and results. In: Lemaire M, Favre JL, Mebarki A, eds. Applications of Statistics and Probability. Rotterdam: Balkema AA, 1995. 1129-1135
    Roy RV. Noise perturbations of nonlinear dynamical systems. In: Cheng AHD, Yang CY, eds. Computational Stochastic Mechanics. Amsterdam: Elsevier, 1993. 125-148
    Ludwig D. Persistence of dynamical systems under random perturbations. SIAM Review, 1975, 17: 605-640
    Matkowshy BJ, Schuss Z. The exit problem for randomly perturbed dynamical systems. SIAM J Appl Math, 1977, 33: 365-382
    Schuss Z, Spivak A. Where is the exit point? Chemical Physics, 1998, 235: 227-242
    Naeh T, Klosek MM, Matkowsky BJ, et al. A direct approach to the exit problem. Siam J Appl Math, 1990, 50: 595-627
    Matkowsky BJ, Schuss Z, Tier C. Uniform expansion of the transition rate in Kramers' problem. Journal of Statistical Physics, 1984, 35: 443-456
    Roy RV. Noise-induced transitions in weakly-nonlinear oscillators near resonance. Journal of Applied Mechanics, 1995, 62: 496-504
    Roy RV. Noise perturbations of a non-linear system with multiple steady states. Int J Non-Linear Mechanics, 1994, 29: 755-773
    Roy RV. Asymptotic analysis of first-passage problems. Int J Non-Linear Mechanics, 1997, 32: 173-186
    Roy RV, Nauman E. Noise-induced effects on a non-linear oscillator. Journal of Sound and Vibration, 1995, 183(2): 269-295
    Roy RV. Global stability analysis of nonlinear dynamical systems. Series on Stability, Vibration and Control of Systems Series B, 1997, 9: 261-295
    Klosek-Dygas MM, Matkowsky BJ, Schuss Z. Stochastic stability of nonlinear oscillators. SIAM J Appl Math, 1988, 48: 1115-1127
    Katz A, Schuss Z. Reliability of elastic structures driven by random loads. SIAM J Appl Math, 1985, 45: 383-402
    Matkowsky BJ, Schuss Z, Ben-Jacob E. A singular perturbation approach to Kramer's diffusion problem. SIAM J Appl Math, 1982, 42: 835-849
    Matkowsky BJ, Schuss Z. Eigenvalues of the Fokker-Planck operator and the approach to equilibrium for diffusions in potential fields. SIAM J Appl Math, 1981, 40: 242-254
    Schuss Z, Matkowsky BJ. The exit problem: a new approach to diffusion across potential barriers. SIAM J Appl Math, 1979, 35: 604-623
    Roy RV. Averaging method for strongly nonlinear oscillators with periodic excitations. International Journal of Non-Linear Mechanics, 1994, 29: 737-753
    Roy RV. Probabilistic analysis of a nonlinear pendulum. Acta Mechanica, 1996, 115: 87-101
    Williams RG. The problem of stochastic exit. SIAM J Appl Math, 1981, 40: 208-223
    Zhu WQ, Wu YJ. First-passage time of duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dynamics, 2003, 32: 291-305
    Chen LC, Zhu WQ. First passage failure of quasi-partial integrable generalized Hamiltonian systems. International Journal of Non-Linear Mechanics, 2010, 45: 56-62
    Chen LC, Zhu WQ. Reliability of quasi integrable generalized Hamiltonian systems. Probabilistic Engineering Mechanics, 2010, 25: 61-66
    Chen LC, Deng ML, Zhu WQ. First passage failure of quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. Acta Mech, 2009, 206: 133-148
    Chen LC, Zhu WQ. First passage failure of quasi non-integrable generalized Hamiltonian systems. Arch Appl Mech, 2010, 80: 883-893
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-15
  • 修回日期:  2013-12-08
  • 刊出日期:  2014-05-17

目录

    /

    返回文章
    返回