1 Wang M, Freund JB, Lele SK. Computational prediction of flowgenerated sound. Annual Review of Fluid Mechanics, 2006, 38:483-512
|
2 Mitchell BE, Lele SK, Moin P. Direct computation of the sound from a compressible co-rotating vortex pair. Journal of Fluid Mechanics,1995, 285: 181-202
|
3 Colonius T, Lele SK, Moin P. Sound generation in a mixing layer. Journal of Fluid Mechanics, 1997, 330: 375-409
|
4 Mitchell BE, Lele SK, Moin P. Direct computation of the sound generated by vortex pairing in an axisymmetric jet. Journal of Fluid Mechanics, 1999, 383: 113-142
|
5 Manning TA. A numerical investigation of sound generation in supersonic jet screech. [PhD Thesis]. Stanford: Department of Aeronautics and Astronautics, Stanford University, 1999
|
6 Freund JB, Lele SK, Moin P. Numerical simulation of a Mach 1.92 turbulent jet and its sound field. AIAA Journal, 2000, 38: 2023-2031
|
7 Mohseni K, Colonius T, Freund JB. An evaluation of linear instability waves as sources of sound in a supersonic turbulent jet. Physics of Fluids, 2002, 14(10): 3593-3600
|
8 Suzuki T, Lele SK. Shock leakage through an unsteady vortex-laden mixing layer: Application to jet screech. Journal of Fluid Mechanics,2003, 490: 139-167
|
9 Lui CCM. A numerical investigation of shock-associated noise. [PhD Thesis]. Stanford: Department of Mechanical Engineering, Stanford University, 2003
|
10 Cheung LC, Lele SK. Linear and nonlinear processes in twodimensional mixing layer dynamics and sound radiation. Journal of Fluid Mechanics, 2009, 625: 321-351
|
11 Bogey C, Bailly C, Juve D. Numerical simulation of sound generated by vortex pairing in a mixing layer. AIAA Journal, 2000, 38:2210-2218
|
12 Bogey C, Bailly C, Juve D. Computation of flow noise using source terms in linearized Euler’s equations. AIAA Journal, 2002, 40: 235-243
|
13 Berland J, Bogey C, Bailly C. Numerical study of screech generation in a planar supersonic jet. Physics of Fluids, 2007, 19(075105):1-14
|
14 Schaupp C, Sesterhenn J, Friedrich R. On a method for direct numerical simulation of shear layer/compression wave interaction for aeroacoustics investigations. Computers and Fluids, 2008, 37: 463-474
|
15 Pao SP, Salas MD. A numerical study of two-dimensional shock vortex interaction. AIAA Paper 1981-1205, 1981
|
16 Ellzey JL, Henneke MR, Picone JM, et al. The interaction of a shock with a vortex: Shock distortion and the production of acoustic waves. Physics of Fluids, 1995, 7: 172-184
|
17 Meadows KR. A study of fundamental shock noise mechanisms. NASA Technical Paper 3605, 1997
|
18 Inoue O, Hattori Y. Sound generation by shock-vortex interactions. Journal of Fluid Mechanics, 1999, 380: 81-116
|
19 Zhang SH, Zhang YT, Shu CW. Multistage interaction of a shock wave and a strong vortex. Physics of Fluids, 2005, 17(116101): 1-13
|
20 Zhang SH, Zhang YT, ShuCW. Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation. Physics of Fluids, 2006, 18(126101): 1-21
|
21 Zhang SH, Jiang SF, Zhang YT, et al. The mechanism of sound generation in the interaction between a shock wave and two counterrotating vortices. Physics of Fluids, 2009, 21(076101): 1-9
|
22 Sandham ND, Yee HC. Performance of low dissipative high order shock-capturing schemes for shock-turbulence interactions. RIACS Technical Report 98.10, NASA Ames Research Center, 1998
|
23 Yee HC, Sandham ND, Djomehri MJ. Low-dissipative high-order shock-capturing methods using characteristic-based filters. Journal of Computational Physics, 1999, 150: 199-238
|
24 Yee HC, Vinokur M, Djomehri MJ. Entropy splitting and numerical dissipation. Journal of Computational Physics, 2000, 162: 33-81
|
25 Kim D, Kwon JH. A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis. Journal of Computational Physics, 2005, 210: 554-583
|
26 Shen YQ, Yang GW. Hybrid finite compact-WENO schemes for shock calculation. International Journal for Numerical Methods in Fluids, 2007, 53: 531-560
|
27 Shen YQ, Zha GC. Generalized finite compact difference scheme for shock/complex flowfield interaction. Journal of Computational Physics, 2011, 230: 4419-4436
|
28 Chaudhuri A, Hadjadj A, Chinnayya A, et al. Numerical study of compressible mixing layers using high-order WENO schemes. Journal of Scientific Computing, 2011, 47: 170-197
|
29 Jiang GS, Shu CW. E cient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126: 202-228
|
30 Zhang SH, Shu CW. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. Journal of Scientific Computing, 2007, 31: 273-305
|
31 Zhang SH, Jiang SF, Shu CW. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. Journal of Scientific Computing, 2011, 47: 216-238
|
32 Shu CW, Osher S. E cient implementation of essentially nonoscillatory shock capturing schemes. Journal of Computational Physics, 1988, 77: 439-471
|
33 Zhang SH, Zhang HX, Shu CW. Topological structure of shock induced vortex breakdown. Journal of Fluid Mechanics, 2009, 639:343-372
|
34 傅德薰, 马延文. 平面混合流拟序结构的直接数值模拟. 中国科 学A 辑, 1996, 26(7): 657-664 (Fu Dexun, Ma Yanwen. Direct numerical simulation of coherent structure in the compressible mixing layer. Science in China, Series A, 1996, 26(7): 657-664 (in Chinese))
|
35 李启兵. 应用BGK 格式对可压缩混合层的数值研究. [博士论文]. 北京: 清华大学, 2002 (Li Qibing. Numerical study of compressible mixing layer with BGK scheme. [PhD Thesis]. Beijing: Tsinghua University, 2002 (in Chinese))
|
36 时晓天. 基于间断有限元的可压缩混合层数值模拟及其结构系综 分析. [博士论文]. 北京: 北京大学, 2010 (Shi Xiaotian. Numerical simulations of compressible mixing layers with a Discontinuous Galerkin method and structural ensemble study. [PhD Thesis]. Beijing: Peking University, 2010 (in Chinese))
|
37 李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究. 力学 学报, 2012, 44(4): 673-686 (Li Hu, Zhang Shuhai. Direct numerical simulation of decaying compressible isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 673-686 (in Chinese))
|
38 Samtaney R, Pullin DI, Kosovic B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Physics of Fluids, 2001, 13(5): 1415-1430
|