EI、Scopus 收录
中文核心期刊

基于拓扑优化技术的集中力扩散结构设计

牛飞, 王博, 程耿东

牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计[J]. 力学学报, 2012, 44(3): 528-536. DOI: 10.6052/0459-1879-2012-2-20120309
引用本文: 牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计[J]. 力学学报, 2012, 44(3): 528-536. DOI: 10.6052/0459-1879-2012-2-20120309
Niu Fei, Wang Bo, Cheng Gengdong. OPTIMUM TOPOLOGY DESIGN OF STRUCTURAL PART FOR CONCENTRATION FORCE TRANSMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536. DOI: 10.6052/0459-1879-2012-2-20120309
Citation: Niu Fei, Wang Bo, Cheng Gengdong. OPTIMUM TOPOLOGY DESIGN OF STRUCTURAL PART FOR CONCENTRATION FORCE TRANSMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536. DOI: 10.6052/0459-1879-2012-2-20120309
牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计[J]. 力学学报, 2012, 44(3): 528-536. CSTR: 32045.14.0459-1879-2012-2-20120309
引用本文: 牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计[J]. 力学学报, 2012, 44(3): 528-536. CSTR: 32045.14.0459-1879-2012-2-20120309
Niu Fei, Wang Bo, Cheng Gengdong. OPTIMUM TOPOLOGY DESIGN OF STRUCTURAL PART FOR CONCENTRATION FORCE TRANSMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536. CSTR: 32045.14.0459-1879-2012-2-20120309
Citation: Niu Fei, Wang Bo, Cheng Gengdong. OPTIMUM TOPOLOGY DESIGN OF STRUCTURAL PART FOR CONCENTRATION FORCE TRANSMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536. CSTR: 32045.14.0459-1879-2012-2-20120309

基于拓扑优化技术的集中力扩散结构设计

基金项目: 国家自然科学基金(90816025, 10802016), 高校博士点基金(200801411053)和中央高校基本科研业务费专项资金(DUT 11 ZD(G)04)资助项目.
详细信息
  • 中图分类号: O342

OPTIMUM TOPOLOGY DESIGN OF STRUCTURAL PART FOR CONCENTRATION FORCE TRANSMISSION

Funds: The project was supported by the National Natural Science Foundation of China (90816025, 10802016), the Specialized Re-search Fund for the Doctoral Program of Higher Education (200801411053) and the Fundamental Research Funds for theCentral Universities (DUT 11 ZD(G)04)
  • 摘要: 对于运载飞行器一类由多个部段装配而成的复杂结构, 外载荷往往被转化为多点集中载荷传递到结构某一部段, 为此, 结构上需要采取使集中力扩散的措施. 基于连续体拓扑优化, 以结构最小柔顺性为目标函数, 同时考虑设计域内材料用量约束和考查区域(承载结构)内力均匀性约束, 提出了集中力扩散结构优化设计的理论模型, 并给出了平面和三维两种不同的优化算例, 均得到了合理的优化设计结果. 最后, 针对运载火箭燃料贮箱短壳, 考虑工程实际的受力及约束情况, 给出了可行的概念性设计方案.
    Abstract: For complicated structures assembled by several parts, like launch vehicle, external load in the form of concentrated load exerted on several points is transmitted to a given section of the structure. Therefore, some measures should be taken in the structural design to diffuse the concentrated force. In order to optimize the structure for diffusing the concentrated force, a theoretical model based on the continuum topology optimization is presented in this paper. The minimum structural compliance is taken as the object function subject to structural materials' volume constraint. Constraints on uniformity of the internal force are also considered in this model. Two-dimensional and three-dimensional examples are presented to illustrate the effectiveness of the formulation and algorithm. Finally, based on the actual forces and displacement constraints, a feasible conceptual design is presented for the short shell of a rocket's storage trunk.
  • BendsØe MP, Sigmund O. Topology Optimization: Theory, Methods, and Applications. Berlin, Heidelberg, New York: Springer, 2003
    杨炳渊. 航天技术导论. 北京: 中国宇航出版社, 1998. 180-191 (Yang Bingyuan. Introduction to Space Technology. Beijing: China Astronautic Publishing House, 1998. 180-191 (in Chinese))
    Rozvany G, Gollub W. Michell layouts for various combinations of line supports-I. International Journal of Mechanical Sciences, 1990, 32(12): 1021-1043  
    Rozvany G, Gollub W, Zhou M. Exact Michell layouts for various combinations of line supports-II. Structural Optimization, 1997, 14(2-3): 138-149
    Lewinski T, Rozvany G. Exact analytical solutions for some popular benchmark problems in topology optimization II: three-sided polygonal supports. Structural and Multidisciplinary Optimization, 2007, 33(4-5): 337-350
    Cheng GD, Guo X. ε-relaxed approach in structural topology optimization. Structural Optimization, 1997, 13(4): 258-266  
    Cheng GD, Jiang Z. Study on topology optimization with stress constraints. Engineering Optimization, 1992, 20(2): 129-148  
    Duysinx P, BendsØe MP. Topology optimization of continuum structures with local stress constraints. International Journal for Numerical Methods in Engineering, 1998, 43(8): 1453-1478  3.0.CO;2-2" target=_blank>
    Le C, Norato J, Bruns T, et al. Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization, 2010, 41(4): 605-620  
    Guo X, Zhang WS, Wang MY, et al. Stress-related topology optimization via level set approach. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47-48): 3439-3452
    BendsØe MP. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193-202  
    Svanberg K. The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373  
    Bourdin B. Filters in topology optimization. International Journal for Numerical Methods in Engineering, 2001, 50(9): 2143-2158  
    李兵, 陈雪峰, 卓颉. ANSYS工程应用. 北京: 清华大学出版社, 2010 (Li Bing, Chen Xuefeng, Zhuo Jie. The Engineer-ing Application of ANSYS. Beijing: Tsinghua University press,2010 (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-11
  • 修回日期:  2011-12-11
  • 刊出日期:  2012-05-17

目录

    /

    返回文章
    返回