EI、Scopus 收录
中文核心期刊

波动数值模拟中的外推型人工边界条件

邢浩洁, 李小军, 刘爱文, 李鸿晶, 周正华, 陈苏

邢浩洁, 李小军, 刘爱文, 李鸿晶, 周正华, 陈苏. 波动数值模拟中的外推型人工边界条件[J]. 力学学报, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408
引用本文: 邢浩洁, 李小军, 刘爱文, 李鸿晶, 周正华, 陈苏. 波动数值模拟中的外推型人工边界条件[J]. 力学学报, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408
Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408
Citation: Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408
邢浩洁, 李小军, 刘爱文, 李鸿晶, 周正华, 陈苏. 波动数值模拟中的外推型人工边界条件[J]. 力学学报, 2021, 53(5): 1480-1495. CSTR: 32045.14.0459-1879-20-408
引用本文: 邢浩洁, 李小军, 刘爱文, 李鸿晶, 周正华, 陈苏. 波动数值模拟中的外推型人工边界条件[J]. 力学学报, 2021, 53(5): 1480-1495. CSTR: 32045.14.0459-1879-20-408
Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. CSTR: 32045.14.0459-1879-20-408
Citation: Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. CSTR: 32045.14.0459-1879-20-408

波动数值模拟中的外推型人工边界条件

基金项目: 1)国家自然科学基金(U1839202);国家自然科学基金(51778588);国家重点研发计划(2017YFC1500400);中国博士后科学基金(2018M641425)
详细信息
    作者简介:

    2)李小军, 教授, 主要研究方向: 地震工程. E-mail: beerli@vip.sina.com

    通讯作者:

    李小军

  • 中图分类号: P315.9,TU435

EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION

  • 摘要: 当前波动数值模拟中的人工边界条件(artificial boundary condition, ABC)数量繁多, 但用于串联它们的理论及公式体系还需进一步完善, 以便在复杂波动问题模拟中更准确地选取ABC并评估其性能. 本工作发展一种外推型人工边界条件理论, 将一系列利用临近边界一组节点在前若干时刻的运动来外推人工边界节点运动的经典ABC纳入一个体系. 这些ABC包括廖氏透射边界(multi-transmittig formula, MTF)、旁轴近似边界、Higdon边界以及Givoli-Neta、Hagstrom-Warburton、AWWE辅助变量边界等. 针对现有边界公式存在的不足, 分别提出一种引入多个人工波速进行优化的MTF公式(离散公式)和一种定义在统一局部坐标之上并采用多个人工波速作为控制参数的统一Higdon边界公式(连续公式或微分方程形式ABC), 作为外推型ABC的两个基本公式. 这二者是最简单实用的外推型ABC, 其他同类ABC大多可以由它们转化得到, 或者通过某种等价的中间形式与之相关联. 数值试验证实了理论的正确性, 并初步展示了多人工波速ABC比传统单一人工波速ABC所具有的优势. 研究结果不仅具有重要理论价值, 还为更好地解决具有差异较大的多种物理波速的复杂波动, 如大纵横波速比的软土介质中波动或海洋声学、 气象学中的频散波动等的ABC问题提供了实用方法.
    Abstract: Up to now there have been a dazzling number of artificial boundary conditions (ABCs) in the field of numerical simulation of wave propagation. In order to choose the most appropriate ABCs and assess their performance in complicated wave problems, the related systems of theory and formula that can be used to classify or merge these ABCs still need to be improved. In this work we develop the theory of extrapolation-type artificial boundary condition which can merge a series of classical ABCs that have the common feature that the motion of each artificial boundary node is extrapolated from the motions of a set of adjacent nodes at several previous time steps. These ABCs include Liao's multi-transmitting formula (MTF), paraxial-approximation absorbing boundary conditions, Higdon boundary conditions, the auxiliary-variable-based ABCs of Givoli-Neta, Hagstrom-Warburton or AWWE, et al. Due to the fact that the existing boundary formulas usually have somewhat imperfections, thus we propose two new basic formulas for the extrapolation-type ABCs. One formula is an optimized MTF which incorporates a set of adjustable artificial wave velocities as the control parameters. The other formula is a unified Higdon boundary formula which is defined in a local coordinate system centered at the boundary node and uses various artificial wave velocities as control parameters. The two basic boundary formulas are the most simple and effective extrapolation-type ABCs. Other local ABCs of this type can mostly be transformed from the two basic boundary formulas, or have connections with them via some kind of equivalent intermediate formulas. Numerical experiments are conducted to validate the effectiveness of the proposed theory and boundary formulas. As compared to traditional ABC employing a single artificial wave velocity, the superiority of using ABCs with adjustable artificial wave velocities is preliminarily revealed in this work. It can be expected that the superiority will be more remarkable in simulating complicated wave problems that have several distinct physical wave velocities, such as elastic waves in soft soils with large ratio of longitudinal and transversal wave velocities, dispersive waves in ocean acoustics or meteorology and so forth.
  • [1] 谢志南, 郑永路, 章旭斌 等. 弱形式时域完美匹配层 —— 滞弹性近场波动数值模拟. 地球物理学报, 2019,62(8):3140-3154

    (Xie Zhinan, Zheng Yonglu, Zhang Xubin, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain. Chinese Journal of Geophysics, 2019,62(8):3140-3154 (in Chinese))

    [2] Zhao M, Wu LH, Du XL, et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media. Computer Methods in Applied Mechanics and Engineering, 2018,334:111-137
    [3] Gao YJ, Song HJ, Zhang JH, et al. Comparison of artificial absorbing boundaries for acoustic wave equation modeling. Exploration Geophysics, 2017,48:76-93
    [4] Huang JJ. An incrementation-adaptive multi-transmitting boundary for seismic fracture analysis of concrete gravity dams. Soil Dynamics and Earthquake Engineering, 2018,110:145-158
    [5] Xing HJ, Li XJ, Li HJ, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling. Soil Dynamics and Earthquake Engineering, 2021,140:1-15
    [6] 邢浩洁, 李鸿晶. 透射边界条件在波动谱元模拟中的实现: 二维波动. 力学学报, 2017,49(4):894-906

    (Xing Haojie, Li Hongjing. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: Two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):894-906 (in Chinese))

    [7] Levin T, Turkel E, Givoli D. Obstacle identification using the TRAC algorithm with a second order ABC. International Journal for Numerical Methods in Engineering, 2019,118(2):61-92
    [8] Halpern L, Trefethen LN. Wide-angle one-way wave equations. Journal of the Acoustical Society of America, 1988,84(4):1397-1404
    [9] Higdon RL. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation. Mathematics of Computation, 1986,47(176):437-459
    [10] Higdon RL. Radiation boundary conditions for elastic wave propagation. SIAM Journal on Numerical Analysis, 1990,27(4):831-870
    [11] Givoli D, Neta B. High-order non-reflecting boundary scheme for time-dependent waves. Journal of Computational Physics, 2003,186:24-46
    [12] Givoli D, Neta B, Patlashenko I. Finite-element analysis of time-dependent semi-infinite wave-guides with high-order boundary treatment. International Journal for Numerical Methods in Engineering, 2003,58:1955-1983
    [13] Hagstrom T, Warburton T. A new auxiliary variable formulation of high-order local radiation boundary conditions: Corner compatibility conditions and extensions to first-order systems. Wave Motion, 2004,39:327-338
    [14] Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions for the wave equation: Extensions and improvements. Journal of Computational Physics, 2008,227:3322-3357
    [15] Guddati MN, Tassoulas JL. Continued-fraction absorbing boundary conditions for the wave equation. Journal of Computational Acoustics, 2000,8(1):139-156
    [16] Guddati MN, Heidari AH. Migration with arbitrary wide-angle wave equations. Geophysics, 2005,70(3):1-10
    [17] Lindman EL. "Free-space" boundary conditions for the time dependent wave equation. Journal of Computational Physics, 1975,18:66-78
    [18] Peng CB, Toks?z MN. An optimal absorbing boundary condition for finite-difference modeling of acoustic and elastic wave propagation. Journal of the Acoustical Society of America, 1994,95(2):733-745
    [19] Randall CJ. Absorbing boundary condition for the elastic wave equation. Geophysics, 1988,53(5):611-624
    [20] Liu Y, Sen MK. An improved hybrid absorbing boundary condition for wave equation modeling. Journal of Geophysics and Engineering, 2018,15:2602-2613
    [21] 徐世刚, 刘洋. 基于优化有限差分和混合吸收边界条件的三维VTI介质声波和弹性波数值模拟. 地球物理学报, 2018,61(7):2950-2968

    (Xu Shigang, Liu Yang. 3D acoustic and elastic VTI modeling with optimal finite-difference schemes and hybrid absorbing boundary conditions. Chinese Journal of Geophysics, 2018,61(7):2950-2968 (in Chinese))

    [22] Cheng NY, Cheng CH. Relationship between Liao and Clayton-Engquist absorbing boundary conditions: Acoustic case. Bulletin of the Seismological Society of America, 1995,85(3):954-956
    [23] 高毅超, 徐艳杰, 金峰. 基于高阶双渐近透射边界的重力坝-层状地基动力相互作用分析. 地球物理学报, 2019,62(7):2582-2590

    (Gao Yichao, Xu Yanjie, Jin Feng. The dynamic analysis of gravity dam-layered foundation interaction based on a high-order double asymptotic open boundary. Chinese Journal of Geophysics, 2019,62(7):2582-2590 (in Chinese))

    [24] 吴利华, 赵密, 杜修力. 黏弹性多层介质中SH波动的一种吸收边界条件. 力学学报, 2020,52(2):480-490

    (Wu Lihua, Zhao Mi, Du Xiuli. An absorbing boundary condition for SH wave propagation in viscoelastic multilayered media. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):480-490 (in Chinese))

    [25] Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 1985,50(4):705-708
    [26] Yang JB, Yu FM, Michael K, et al. The Perfectly Matched Layer absorbing boundary for fluid--structure interactions using the Immersed Finite Element Method. Journal of Fluids and Structures, 2018,76:135-152
    [27] Higdon RL. Absorbing boundary conditions for elastic waves. Geophysics, 1991,56(2):231-241
    [28] Liao ZP. Extrapolation non-reflecting boundary conditions. Wave Motion, 1996,24:117-138
    [29] 李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳. 力学学报, 1996,28(5):627-632

    (Li Xiaojun, Liao Zhenpeng. The drift instability of local transmitting boundary in time domain. Chinese Journal of Theoretical and Applied Mechanics, 1996,28(5):627-632 (in Chinese))

    [30] 周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施. 力学学报, 2001,33(4):550-554

    (Zhou Zhenghua, Liao Zhenpeng. A measure for eliminating drift instability of the multi-transmitting formula. Chinese Journal of Theoretical and Applied Mechanics, 2001,33(4):550-554 (in Chinese))

    [31] 陈少林, 廖振鹏. 多次透射公式在衰减波场中的实现. 地震学报, 2003,25(3):272-280

    (Chen Shaolin, Liao Zhenpeng. Multi-transmitting formula for attenuating waves. Acta Seismologica Sinica, 2003,25(3):272-280 (in Chinese))

    [32] Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations. Communications on Pure and Applied Mathematics, 1980,XXXIII:707-725
    [33] Reynolds AC. Boundary conditions for the numerical solution of wave propagation problems. Geophysics, 1978,43(6):1099-1110
    [34] Keys RG. Absorbing boundary conditions for acoustic media. Geophysics, 1985,50(6):892-902
    [35] Fuyuki M, Matsumoto Y. Finite difference analysis of Rayleigh wave scattering at a trench. Bulletin of the Seismological Society of America, 1980,70(6):2051-2069
    [36] Emerman SH, Stephen RA. Comment on "Absorbing boundary conditions for acoustic and elastic wave equations," by R. Clayton and E. Engquist. Bulletin of the Seismological Society of America, 1983,73(2):661-665
    [37] Stacey R. Improved transparent boundary formulations for the elastic-wave equation. Bulletin of the Seismological Society of America, 1988,78(6):2089-2097
    [38] Bécache E, Givoli D, Hagstrom T. High-order absorbing boundary conditions for anisotropic and convective wave equations. Journal of Computational Physics, 2010,229:1099-1129
    [39] Kausel E. Local transmitting boundaries. Journal of Engineering Mechanics, 1988,114(6):1011-1027
    [40] 吴利华, 赵密, 杜修力. 黏弹性多层介质中SH波动的一种吸收边界条件. 力学学报, 2020,52(2):480-490

    (Wu Lihua, Zhao Mi, Du Xiuli. An absorbing boundary condition for SH wave propagation in viscoelastic multilayered media. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):480-490 (in Chinese))

    [41] 李述涛, 刘晶波, 宝鑫. 采用黏弹性人工边界单元时显式算法稳定性的改善研究. 力学学报, 2020,52(6):1838-1849

    (Li Shutao, Liu Jingbo, Bao Xin. Improvement of explicit algorithms stability with visco-elastic artificial boundary elements. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1838-1849 (in Chinese))

    [42] 陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019,51(2):594-606

    (Chen Shaolin, Ke Xiaofei, Zhang Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):594-606 (in Chinese))

    [43] 陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析. 力学学报, 2020,52(2):578-590

    (Chen Shaolin, Sun Jie, Ke Xiaofei. Analysis of water-seabed-structure dynamic interaction excited by plane waves. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):578-590 (in Chinese))

  • 期刊类型引用(5)

    1. 段雪良,周正华,卞祝,韩轶,赵玲,李政,廖成亮,贺家聪,刘伟. 插值算法对透射边界数值模拟结果的影响分析. 地震科学进展. 2025(04): 197-208 . 百度学术
    2. 李小军,张恂,邢浩洁. 基于动态人工波速的透射边界. 力学学报. 2024(10): 2924-2935 . 本站查看
    3. 陈苏,丁毅,孙浩,赵密,王进廷,李小军. 物理驱动深度学习波动数值模拟方法及应用. 力学学报. 2023(01): 272-282 . 本站查看
    4. 邢浩洁,刘爱文,李小军,陈苏,傅磊. 多人工波速优化透射边界在谱元法地震波动模拟中的应用. 地震学报. 2022(01): 26-39 . 百度学术
    5. 邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 弹性波模拟中局部透射边界的反射特征及参数优化. 振动与冲击. 2022(12): 301-312 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1357
  • HTML全文浏览量:  286
  • PDF下载量:  108
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-11-30
  • 刊出日期:  2021-05-17

目录

    /

    返回文章
    返回