PARAMETERS OPTIMIZATION OF A DYNAMIC VIBRATION ABSORBER WITH INERTER AND GROUNDED STIFFNESS
-
摘要: 大多数机械振动属于有害振动, 不仅会产生噪声还会降低设备的使用寿命和工作性能. 接地刚度和惯容这两种器件均能改变系统的固有频率, 在振动控制领域中有着良好的效果. 但目前的大部分研究仅着眼于单一元件对系统产生的影响, 而此类吸振器逐渐难以满足设备对振动控制需求的增长. 在Voigt型动力吸振器模型的基础上, 提出了一种含有惯容和接地刚度的新型动力吸振器模型, 详细研究了该模型的最优设计参数, 推导出最优设计公式的解析解. 首先通过牛顿第二定律建立起二自由度系统的运动微分方程, 计算出系统解析解, 发现系统存在3个与阻尼比无关的固定点, 利用固定点理论得到了动力吸振器的最优频率比. 为保证系统稳定性, 筛选最优接地刚度比时, 发现不恰当的惯容系数会导致系统产生失稳现象, 进而推导出惯容最佳工作范围, 最终得到了最优接地刚度比和近似最优阻尼比. 分析了惯容系数取值在最佳范围以外时系统的工作情况, 并给出了实际应用中的建议. 通过数值仿真验证了推导得到解析解的正确性. 与多种已有的动力吸振器在简谐激励和随机激励的工况下进行对比, 说明了该模型能够大幅降低主系统振幅, 拓宽减振频带, 为设计新型吸振器提供了理论依据.Abstract: Most mechanical vibrations are detrimental that not only generate noise but also reduce the service life and operating performance of the equipment. As two common components, grounded stiffness and inerter can change the natural frequency of the system, which has good effect in the field of vibration control. However, most of the current research only focuses on the impact of a single component on the system, and the vibration absorber is gradually difficult to meet the growth of performance demand for vibration control. Based on the typical Voigt-type dynamic vibration absorber, a novel dynamic vibration absorber model with inerter and grounded stiffness is presented. The optimal parameters of the presented model are studied in detail, and the analytical solution of the optimal design formula is derived. First of all, the motion differential equation of the two degree-of-freedom system is established through Newton's second law, and from the system analytical solution it is found that the system has three fixed points unrelated to the damping ratio. The optimal frequency ratio of the dynamic vibration absorber is obtained based on the fixed-point theory. When screening the optimal grounded stiffness ratio, it is found that the inappropriate inerter coefficient will cause the system to generate instability. Then the best working range of the inerter is derived, and finally the optimal grounded stiffness ratio and approximate optimal damping ratio are also obtained. The working condition when the inerter coefficient is not within the best range is discussed, and the suggestions in practical application are given. The correctness of the analytical solution is verified by numerical simulation. Compared with other dynamic vibration absorbers under harmonic and random excitations, it is verified that the presented DVA can greatly reduce the amplitude of the primary system, widen the vibration reduction frequency band, and provide a theoretical basis for the design of new type of DVAs.
-
Keywords:
- dynamic vibration absorber /
- inerter /
- grounded stiffness /
- parameter optimization
-
-
[1] Frahm H. Device for damping vibrations of bodies. U.S. Patent 089958, 1909-10-30 [2] Ormondroyd J, Den Hartog JP. The theory of the dynamic vibration absorber. Journal of Applied Mechanics, 1928,50:9-22 [3] Den Hartog JP. Mechanical Vibrations. New York: McGraw-Hall Book Company, 1947: 112-132 [4] Liu KF, Liu J. The damped dynamic vibration absorbers: Revisited and new result. Journal of Sound and Vibration, 2005,284(3):1181-1189 [5] Shen YJ, Wang L, Yang SP, et al. Nonlinear dynamical analysis and parameters optimization of four semi-active on-off dynamic vibration absorbers. Journal of Vibration and Control, 2013,19(1):143-160 [6] Shen YJ, Ahmadian M. Nonlinear dynamical analysis on four semiactive dynamic vibration absorbers with time delay. Shock and Vibration, 2013,20(4):649-663 [7] 郎君, 申永军, 杨绍普. 一种半主动动力吸振器参数优化及性能比较. 振动与冲击, 2019,38(17):172-177 (Lang Jun, Shen Yongjun, Yang Shaopu. Parametric optimization and performance comparison for 2 semi-active Voigt DVAs. Journal of Vibration and Shock, 2019,38(17):172-177 (in Chinese))
[8] 邢子康, 申永军, 李向红. 接地式三要素型动力吸振器性能分析. 力学学报, 2019,51(5):1466-1475 (Xing Zikang, Shen Yongjun, Li Xianghong. Performance analysis of grounded three-element dynamic vibration absorber. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1466-1475 (in Chinese))
[9] 李涵, 张小龙, 张凯 等. 随机激励下新型滚珠式吸振器的参数最优设计. 噪声与振动控制, 2020,40(6):41-45, 72 (Li Han, Zhang Xiaolong, Zhang Kai, et al. Optimal parameters design of a ball type dynamic vibration absorber under random excitation. Noise and Vibration Control, 2020,40(6):41-45, 72 (in Chinese))
[10] 白世鹏, 侯之超. 动力吸振器对车辆垂向振动能量及悬架性能的影响. 振动与冲击, 2020,39(22):169-174 (Bai Shipeng, Hou Zhichao. Impact of dynamic vibration absorbers on vehicle vertical vibration energy and suspension performances. Journal of Vibration and Shock, 2020,39(22):169-174 (in Chinese))
[11] 张卫华, 罗仁, 宋春元 等. 基于电机动力吸振的高速列车蛇行运动控制. 交通运输工程学报, 2020,20(5):125-134 (Zhang Weihua, Luo Ren, Song Chunyuan, et al. Hunting control of high-speed train using traction motor as dynamic absorber. Journal of Traffic and Transportation Engineering, 2020,20(5):125-134 (in Chinese))
[12] 刘兴天, 陈树海, 王嘉登 等. 几何非线性摩擦阻尼隔振系统动力学行为研究. 力学学报, 2019,51(2):371-379 (Liu Xingtian, Chen Shuhai, Wang Jiadeng, et al. Anlysis of the dynamic behavior and performance of a vibration isolation system with geometric nonlinear friction damping. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):371-379 (in Chinese))
[13] 张婉洁, 牛江川, 申永军 等. 一类阻尼控制半主动隔振系统的解析研究. 力学学报, 2020,52(6):1743-1754 (Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, et al. Dynamical analysis on a kind of semi-active vibration isolation systems with damping control. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1743-1754 (in Chinese))
[14] Acar MA, Yilmaz C. Design of an adaptive--passive dynamic vibration absorber composed of a string--mass system equipped with negative stiffness tension adjusting mechanism. Journal of Sound and Vibration, 2013,332(2):231-245 [15] 彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化. 力学学报, 2015,47(2):320-327 (Peng Haibo, Shen Yongjun, Yang Shaopu. Parameter optimization of a new type of dynamic vibration absorber with negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2):320-327 (in Chinese))
[16] 王孝然, 申永军, 杨绍普 等. 含负刚度元件的三要素型动力吸振器的参数优化. 振动工程学报, 2017,30(2):177-184 (Wang Xiaoran, Shen Yongjun, Yang Shaopu, et al. Parameter optimization of three-element type dynamic vibration absorber with negative stiffness. Journal of Vibration Engineering, 2017,30(2):177-184 (in Chinese))
[17] Shen YJ, Peng HB, Li XH, et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness. Mechanical Systems and Signal Processing, 2017,85:192-203 [18] Shen YJ, Xing ZY, Yang SP, et al. Parameters optimization for a novel dynamic vibration absorber. Mechanical Systems and Signal Processing, 2019,133:106282 [19] 邢昭阳, 申永军, 邢海军 等. 一种含放大机构的负刚度动力吸振器的参数优化. 力学学报, 2019,51(3):894-903 (Xing Zhaoyang, Shen Yongjun, Xing Haijun, et al. Parameters optimization of a dynamic vibration absorber with amplifying mechanism and negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):894-903 (in Chinese))
[20] 李昊, 赵发刚, 周徐斌. 基于混杂双稳定层合板的准零刚度隔振装置. 力学学报, 2019,51(2):354-363 (Li Hao, Zhao Fagang, Zhou Xubin. A quasi-zero stiffness vibration isolator based on hybrid bistable composite laminate. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):354-363 (in Chinese))
[21] Zhou SY, Claire JM, Simon C, et al. Closed-form solutions to optimal parameters of dynamic vibration absorbers with negative stiffness under harmonic and transient excitation. International Journal of Mechanical Sciences, 2019, 157-158:528-541 [22] Chen MZQ, Hu Y, Huang L, et al. Influence of inerter on natural frequencies of vibration systems. Journal of Sound & Vibration, 2014,333(7):1874-1887 [23] 杨晓峰, 沈钰杰, 陈龙 等. 基于动力吸振理论的车辆 ISD 悬架设计与性能分析. 汽车工程, 2014,36(10):1262-1266, 1277 (Yang Xiaofeng, Shen Yujie, Chen Long, et al. Design and performances analysis of vehicle ISD suspension based on dynamic vibration absorber theory. Automotive Engineering, 2014,36(10):1262-1266, 1277 (in Chinese))
[24] Hu Y, Chen M ZQ. Performance evaluation for inerter-based dynamic vibration absorbers. International Journal of Mechanical Sciences, 2015,99:297-307 [25] Hu Y, Chen M ZQ, Shu Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. Journal of Sound and Vibration, 2015,346(1):17-36 [26] Wang XR, Liu XD, Shan YC, et al. Analysis and optimization of the novel inerter-based dynamic vibration absorbers. IEEE Access, 2018,6:2844086 [27] Wang XR, He T, Shen YJ, et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness. Journal of Sound and Vibration, 2019,463:114941 [28] 陈杰, 孙维光, 吴杨俊 等. 基于惯容负刚度动力吸振器的梁响应最小化. 振动与冲击, 2020,39(8):15-22 (Chen Jie, Sun Weiguang, Wu Yangjun, et al. Minimization of beam response using inerter-based dynamic vibration absorber with negative stiffness. Journal of Vibration and Shock, 2020,39(8):15-22 (in Chinese))
[29] Gioacchino A, Giuseppe F. Improved inerter-based vibration absorbers. International Journal of Mechanical Sciences, 2021,192:106087 [30] 王勇, 汪若尘, 孟浩东 等. 基于相对加速度-相对速度控制的半主动惯容隔振器动态特性研究. 振动与冲击, 2019,38(21):194-201, 228 (Wang Yong, Wang Ruochen, Meng Haodong, et al. Dynamic characteristics of semi active inerter-based vibration isolator with relative acceleration-relative velocity control. Journal of Vibration and Shock, 2019,38(21):194-201, 228 (in Chinese))
-
期刊类型引用(11)
1. 杨子健,王军,张建超,温少芳. 含接地阻尼的分段刚度NES减振性能研究. 振动与冲击. 2025(06): 47-57+65 . 百度学术
2. 王珏,张莹,黄愫,叶会然,单柯. 考虑SSI效应的升降作业平台惯容减振优化设计. 地震工程与工程振动. 2024(01): 214-224 . 百度学术
3. 马地龙,王琳,陈伟. 硬磁软材料输流管的屈曲不稳定性分析. 力学学报. 2024(03): 691-703 . 本站查看
4. Honglin WAN,Xianghong LI,Yongjun SHEN. Study on vibration reduction of two-scale system coupled with dynamic vibration absorber. Applied Mathematics and Mechanics(English Edition). 2024(08): 1335-1352 . 必应学术
5. 苏宁,张杰,洪宁宁,彭士涛. 广义变式惯容动力吸振器的H_∞和H_2解析优化. 振动与冲击. 2023(09): 47-56 . 百度学术
6. 王珏,张莹,黄愫,叶会然,周叮. 位移激励下含负刚度的惯容减振系统参数优化解析研究. 振动工程学报. 2023(03): 804-814 . 百度学术
7. 隋鹏,申永军,温少芳. 动力吸振器基础变形及参数优化. 振动工程学报. 2023(04): 979-987 . 百度学术
8. 杨柳青,赵艳影. 一种含惯容的接地刚度时滞反馈动力吸振器的多目标优化设计. 振动与冲击. 2023(23): 133-143 . 百度学术
9. 万洪林,李向红,申永军,王艳丽. 两尺度Duffing系统的动力吸振器减振研究. 力学学报. 2022(11): 3136-3146 . 本站查看
10. 杨晓彤,申永军,王俊锋. 一种含放大机构、惯容和接地刚度的动力吸振器的参数优化. 振动与冲击. 2022(21): 308-315 . 百度学术
11. 俞力洋,黄然,吴少培,丁旺才,李国芳,屈鸣鹤. 橡胶四元件模型动力学特性分析. 机械科学与技术. 2022(11): 1686-1692 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 1239
- HTML全文浏览量: 263
- PDF下载量: 229
- 被引次数: 20