ELECTROMAGNETIC MECHANICAL BEHAVIOR OF A SUPERCONDUCTING COATING FOR HTS TAPES WITH LOCAL DETACHMENT
-
摘要: 高温超导带材因其高载流z能力、低交流损耗等优点, 在超导领域得到了广泛的关注, 然而在带材的应用中出现的力学问题严重阻碍了其应用. 基于此, 本文分析了受外部磁场激励YBCO高温超导带材在超导层局部脱黏后的电磁力学响应. 基于超导临界态Bean模型和弹性力学平面应变方法, 给出了超导薄膜内正应力与基底界面处切应力相关联的控制方程, 基于数值方法研究了超导薄膜内的正应力及基底界面处的切应力随外部磁场的变化规律. 结果显示: 在脱黏区域附近, 超导薄膜内的正应力和基底$\!-\!$薄膜界面处的切应力急剧增大, 该正应力及切应力极易引起超导层的进一步脱黏. 同时, 剪切应力在结构边缘处出现极值. 基底材料的属性, 特别是杨氏模量对结构内的应力影响显著, 在软基底材料结构中, 超导薄膜内将出现较大的正应力, 而基底材料较硬时, 在基底$\!-\!$薄膜界面处将出现较大的剪切应力, 这些因素均会引起超导涂层结构的力学及电学性能的退化. 本文研究可望为超导带材的加工制备及脱黏的处理提供一定的理论指引.Abstract: High temperature superconducting tapes has been widely investigated in the field of superconducting technology due to its outstanding advantages of high current carrying, low loss and high cost performance. However, the superconducting tape is a multi-layer structure consisting of the Hastelloy alloy substrate, the buffer layer, the YBCO superconducting layer and the protective layer. Its multi-layer structure characteristics including the difference in the properties of each material layer and the complex external field environment will cause local debonding. It is very easy to degrade the transmission performance and mechanical properties. In this paper, the mechanical response of locally detachment YBCO high-temperature superconducting tapes under the excitation of an external vertical magnetic field is studied. Based on the superconducting critical state Bean model and the elasticity plane strain method, the interface between the normal stress of the superconducting film and the substrate is given. The governing equations related to the shear stress, numerically calculated the normal stress in the superconducting film and the shear stress at the substrate interface with the external magnetic field. The results show that the normal stress in the superconducting film and the shear stress at the substrate film interface increase rapidly near the detachment region. At the same time, the maximum shear stress appears at the edge of the structure. The properties of the substrate material, especially the Young's modulus, has a significant effect on the stress in the structure. In the structure of soft substrate material, there is a large normal stress in the superconducting film, and when the Young's modulus of the substrate is larger, a larger shear stress appears at the substrate film interface. These factors will cause the degradation of mechanical and electrical properties of superconducting coating structure. The work may provide some theoretical guidance for fabricating the superconducting tapes and and suppression of layer debonding.
-
-
[1] Meissner W, Ochsenfeld R. Ein neuer effekt bei eintritt der supraleitfhigkeit. Naturwissenschaften, 1933,21(44):787-788 [2] 王骁磊, 袁文, 张腾 等. 第二代高温超导带材的连接技术研究进展. 低温与超导, 2020,48(11):41-50 (Wang Xiaolei, Yuan Wen, Zhang Teng, et al. Research progress in the connection technology of the second generation HTS strip. Cryogenics & Superconductivity, 2020,48(11):41-50 (in Chinese))
[3] 王秋良. 高磁场超导磁体科学. 北京: 科学出版社, 2008 (Wang Qiuliang. High Magnetic Field Superconducting Magnet Science. Beijing: Science Press, 2008 (in Chinese))
[4] 蔡传兵, 池长鑫, 李敏娟 等. 强磁场用第二代高温超导带材研究进展与挑战. 科学通报, 2019,64(8):827-844 (Cai Chuanbing, Chi Changxin, Li Minjuan, et al. Advance and challenge of secondary-generation high-temperature superconducting tapes for high field applications. Chinese Science Bulletin, 2019,64(8):827-844 (in Chinese))
[5] 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展. 力学学报, 2020,52(5):1221-1234 (Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1221-1234 (in Chinese))
[6] 王银顺. 基于第二代高温超导带材的高载流超导导体研究进展. 电工电能新技术, 2017,36(11):21-35 (Wang Yinshun. Recent status and development of high current conductor made from 2g HTS tapes. Advanced Technology of Electrical Engineering and Energy, 2017,36(11):21-35 (in Chinese))
[7] 赵跃, 张智巍, 朱佳敏 等. 面向实用化的第二代高温超导带材研究进展. 电工电能新技术, 2017,36(10):69-75 (Zhao Yue, Zhang Zhiwei, Zhu Jiamin, et al. Progress of second generation high temperature superconductors for practical applications. Advanced Technology of Electrical Engineering and Energy, 2017,36(10):69-75 (in Chinese))
[8] 阎伟华, 蔡传兵, 周迪帆. 基于第二代高温超导带材的磁体研究进展与挑战. 物理, 2019,48(11):733-748 (Yan Weihua, Cai Chuanbing, Zhou Difan. Progress and challenges in the development of magnets based on second-generation high temperature superconducting tapes. Physics, 2019,48(11):733-748 (in Chinese))
[9] 李群. 材料构型力学及其在复杂缺陷系统中的应用. 力学学报, 2015,47(2):197-214 (Li Qun. Material configurational mechanics with application to complex defects. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2):197-214 (in Chinese))
[10] 曹明月, 张启, 吴建国 等. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报, 2020,52(4):1095-1105 (Cao Mingyue, Zhang Qi, Wu Jianguo, et al. Study on nonlinear constitutive relationship and fracture behavior of stitched C/SiC composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1095-1105 (in Chinese))
[11] Chen YW, Li XF, Chen DC, et al. A critical current measurement method for strip hard superconductors utilizing pulsed current. IEEE Transactions on Applied Superconductivity, 2020,30(4):1-5 [12] Amemiya N, Sogabe Y, Takayama S, et al. AC loss and shielding-current-induced field in a coated-conductor test magnet for accelerator applications under repeated excitations. IEEE Transactions on Applied Superconductivity, 2020,30(4):1-5 [13] Yang YM, Wang XZ. Flux-pinning-induced stress and magnetostriction in a superconducting strip under combination of transport current and magnetic field. Journal of Applied Physics, 2017,122(11):115103 [14] Yang YM, Wang XZ. Magnetization and magnetoelastic behavior of a functionally graded rectangular superconductor slab. Journal of Applied Physics, 2014,116(2):023901 [15] 黑颖顿, 罗书山, 谭亚雄 等. 高温超导带材在磁场环境下的角度依赖性研究. 云南电力技术, 2020,48(5):85-88 (Hei Yingdun, Luo Shushan, Tan Yaxiong, et al. Study on Angle dependence of high temperature superconducting tapes under magnetic field. Yunnan Electric Power, 2020,48(5):85-88 (in Chinese))
[16] Wang L, Wang Q. Analysis of current and magnetic distributions in REBCO superconducting coated conductors in self- and external fields. Journal of Superconductivity & Novel Magnetism, 2014,27(5):1159-1166 [17] 李腾腾, 雷鸣, 羊新胜 等. 侧向压力下高温超导带材性能研究. 低温与超导, 2020,48(7):39-43 (Li Tengteng, Lei Ming, Yang Xinsheng, et al. Study on the performance of high temperature superconducting tapes under lateral pressure. Cryogenics & Superconductivity, 2020,48(7):39-43 (in Chinese))
[18] Osamura K, Sugano M, Machiya S, et al. Internal residual strain and critical current maximum of a surrounded Cu stabilized YBCO coated conductor. Superconductor Science and Technology, 2009,22(6):32-32 [19] Takematsu T, Hu R, Takao T, et al. Degradation of the performance of a YBCO-coated conductor double pancake coil due to epoxy impregnation. Physica C$:$ Superconductivity & Its Applications, 2010,470(17-18):674-677 [20] Shin HS, Gorospe A. Characterization of transverse tensile stress response of critical current and delamination behaviour in GdBCO coated conductor tapes by anvil test. Superconductor Science & Technology, 2014,27(2):2-3 [21] Shi JT, Yang XS, Xu M, et al. Effect of defects on the quench properties of stacked REBCO tapes. IEEE Transactions on Applied Superconductivity, 2020,31(1):4700105 [22] 刘君, 黄晨光, 雍华东 等. 含缺陷高温超导带材的磁化和力学特性分析. 北京工业大学学报, 2018,44(3):439-448 (Liu Jun, Huang Chenguang, Yong Huadong, et al. Numerical simulation of magnetization and mechanical properties for high temperature superconducting strip with defect. Journal of Beijing University of Technology, 2018,44(3):439-448 (in Chinese))
[23] Jing Z, Yong HD, Zhou YH. Shear and transverse stress in a thin superconducting layer in simplified coated conductor architecture with a pre-existing detachment. Journal of Applied Physics, 2013,114(3):033907 [24] Yang YM, Wang XZ. Stress and magnetostriction in an infinite hollow superconducting cylinder with a filling in its central hole. Physica C: Superconductivity and Its Applications, 2013,485(1):58-63 [25] Brandt EH, Indenbom M. Type-II-superconductor strip with current in a perpendicular magnetic field. Physical Review B Condensed Matter, 1993,48(17):12893-12906 [26] Freund LB. Substrate curvature due to thin film mismatch strain in the nonlinear deformation range. Journal of the Mechanics & Physics of Solids, 2000,48(6-7):1159-1174 [27] Zhang XC, Xu BS, Wang HD, et al. Analytical modeling of edge effects on the residual stresses within the film/substrate systems. Journal of Applied Physics, 2006,100(11):113525 [28] Lanzoni L. Analysis of stress singularities in thin coatings bonded to a semi-infinite elastic substrate. International Journal of Solids and Structures, 2011,48(13):1915-1926 [29] Wang XD, Meguid SA. On the electroelastic behaviour of a thin piezoelectric actuator attached to an infinite host structure. International Journal of Solids & Structures, 2000,37(23):3231-3251 [30] Sokolovsky VL, Prigozhin L, Kozyrev AB. Chebyshev spectral method for superconductivity problems. Superconductor Science and Technology, 2020,33(8):1-13 [31] Alaca BE, Saif MTA, Sehitoglu H. On the interface debond at the edge of a thin film on a thick substrate. Acta Materialia, 2002,50(5):1197-1209 [32] 谷岩, 张耀明. 双材料界面裂纹复应力强度因子的正则化边界元法. 力学学报, 2021,53(2):1-10 (Gu Yan, Zhang Yaoming. Boundary element analysis of complex stress intensity factors of bimaterial interface cracks. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):1-10 (in Chinese))
-
期刊类型引用(4)
1. 周煜棠,王博,张博涵,毕皓皓,黄永安,王烁道. 可延展压电薄膜基底结构界面脱粘的预测与调控. 工程力学. 2024(04): 247-256 . 百度学术
2. 杨育梅,王正鹏,雷芳明. 超导带材涂层结构边缘脱粘后的电磁应力分析. 工程力学. 2024(08): 250-256 . 百度学术
3. 黄晨光,王富生,吕晨杨,陈龙. 复合超导线圈的电热失稳机理与弹塑性分析. 力学学报. 2024(12): 3484-3497 . 本站查看
4. 杨育梅,马蓉蓉,雷芳明. 临界电流密度的非均匀性对超导薄板电磁力学特性的影响. 工程力学. 2023(09): 247-256 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 1128
- HTML全文浏览量: 294
- PDF下载量: 91
- 被引次数: 6