EI、Scopus 收录
中文核心期刊

原子力显微镜在二维材料力学性能测试中的应用综述

高扬

高扬. 原子力显微镜在二维材料力学性能测试中的应用综述[J]. 力学学报, 2021, 53(4): 929-943. DOI: 10.6052/0459-1879-20-354
引用本文: 高扬. 原子力显微镜在二维材料力学性能测试中的应用综述[J]. 力学学报, 2021, 53(4): 929-943. DOI: 10.6052/0459-1879-20-354
Gao Yang. REVIEW OF THE APPLICATION OF ATOMIC FORCE MICROSCOPY IN TESTING THE MECHANICAL PROPERTIES OF TWO-DIMENSIONAL MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929-943. DOI: 10.6052/0459-1879-20-354
Citation: Gao Yang. REVIEW OF THE APPLICATION OF ATOMIC FORCE MICROSCOPY IN TESTING THE MECHANICAL PROPERTIES OF TWO-DIMENSIONAL MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929-943. DOI: 10.6052/0459-1879-20-354
高扬. 原子力显微镜在二维材料力学性能测试中的应用综述[J]. 力学学报, 2021, 53(4): 929-943. CSTR: 32045.14.0459-1879-20-354
引用本文: 高扬. 原子力显微镜在二维材料力学性能测试中的应用综述[J]. 力学学报, 2021, 53(4): 929-943. CSTR: 32045.14.0459-1879-20-354
Gao Yang. REVIEW OF THE APPLICATION OF ATOMIC FORCE MICROSCOPY IN TESTING THE MECHANICAL PROPERTIES OF TWO-DIMENSIONAL MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929-943. CSTR: 32045.14.0459-1879-20-354
Citation: Gao Yang. REVIEW OF THE APPLICATION OF ATOMIC FORCE MICROSCOPY IN TESTING THE MECHANICAL PROPERTIES OF TWO-DIMENSIONAL MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929-943. CSTR: 32045.14.0459-1879-20-354

原子力显微镜在二维材料力学性能测试中的应用综述

基金项目: 1)浙江大学百人计划资助项目(188020*194222002/035/008)
详细信息
    作者简介:

    2)高扬, 研究员, 主要研究方向: 微纳米力学、极端力学、二维材料力学. E-mail: ygao96@zju.edu.cn

    通讯作者:

    高扬

  • 中图分类号: U260.17

REVIEW OF THE APPLICATION OF ATOMIC FORCE MICROSCOPY IN TESTING THE MECHANICAL PROPERTIES OF TWO-DIMENSIONAL MATERIALS

  • 摘要: 以石墨稀为代表, 二维材料有着诸多优异的性质, 在下一代电子器件等领域拥有广阔的应用前景. 目前绝大多数关于二维材料的研究都集中在其电子学和光学的性质和应用, 对于其力学性质的研究则相对欠缺, 而力学性质在二维材料的研究和应用中都有着至关重要的意义. 原子力显微镜是低维材料力学性质表征的主要手段, 例如基于原子力显微镜的纳米压痕技术. 本文首先简要介绍了二维材料的基本背景以及原子力显微镜的工作原理. 进一步展示了纳米压痕技术的工作原理和理论背景, 并回顾了利用纳米压痕技术研究二维材料面内力学性质的相关实验和理论工作, 同时探讨了原子力显微镜在表征二维材料力学性能中存在的测量误差及来源. 由于二维材料展现出强烈的各向异性, 纳米压痕技术在能够很好地测量二维材料面内力学性质的同时, 对于二维材料层间力学性质表征等方面存在明显的局限性. 第三部分介绍了一种全新的基于原子力显微镜的埃(Å)压痕技术, 该技术能够将形变尺度控制在0.1 nm以内, 从而精确地表征和调控二维材料的层间范德华作用力, 即层间力学性质. 作者在第三部分介绍了通过埃压痕技术表征和调控的石墨烯、氧化石墨烯等二维材料的层间力学性质. 最后简要介绍了范德华异质结材料的基本性质, 探讨了埃压痕技术在该材料力学性质研究中的潜在应用.
    Abstract: Graphene and other two-dimensional (2D) materials possess various excellent properties and hold great promises for next generation of electronic devices and other applications. The mechanical properties are of fundamental importance in the research and application of 2D materials. Despite the fact that 2D materials have been extensively investigated in the past two decades, efforts on the mechanical properties are strikingly lacking and vastly needed. Atomic force microscopy (AFM) is one of the most widely used tools for the mechanical characterizations of low-dimensional materials. Particularly, the AFM-based nano-indentation technique has been extensively employed to explore the mechanical properties of 2D materials. In this review, we first introduce the basic backgrounds of 2D materials and atomic force microscopy. The mechanism and theoretical background of AFM-based nano-indentation are then demonstrated. In the second part, we review the research work by employing nano-indentation on studying the in-plane mechanical properties of 2D materials. The measurement errors of AFM-based nano-indentation and their origins are also discussed. Nano-indentation is perfectly suitable for the in-plane/intralayer mechanical measurement but also greatly limited in probing the out-of-plane/interlayer elasticity, due to the extreme anisotropy of 2D materials. Therefore, in the third part, we introduce an unconventional AFM-based technique - Angstrom-indentation which allows for sub-nm deformation on 2D materials. With such a shallow indentation depth comparable to the interlayer spacing of 2D materials, Angstrom-indentation is capable of measuring and tuning the interlayer van der Waals interactions in 2D materials. The interlayer elasticities of graphene and graphene oxide measured by Angstrom-indentation are discussed as examples in the third part. In the final part, we give a quick overview of a new type of 2D material - van der Waals heterostructure and its novel mechanical properties. We also discuss the potential application of Å-indentation in the investigation of the mechanical properties of van der Waals heterostructures.
  • [1] Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(30):10451-10453
    [2] Geim AK. Graphene: Status and prospects. Science, 2009,324(5934):1530-1534
    [3] Geim AK, Novoselov KS. Nanoscience and technology: A collection of reviews from nature journals. World Scientific, 2010: 11-19
    [4] Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666-669
    [5] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B, 2004,108(52):19912-19916
    [6] 胡耀娟, 金娟, 张卉 等. 墨烯的制备, 功能化及在化学中的应用. 物理化学学报, 2010,26(8):2073-2086

    (Hu Yaojuan, Jin Juan, Zhang Hui, et al. Graphene: Synthesis, functionaliation and applications in chemistry. Acta Physico-Chimica Sinica, 2010,26(8):2073-2086 (in Chinese))

    [7] 徐秀娟, 秦金贵, 李振. 石墨烯研究进展. 化学进展, 2009,21(12):2559-2567

    (Xu Xiujuan, Qin Jingui, Li Zhen. Research advances of graphene. Progress in Chemistry, 2009,21(12):2559-2567 (in Chinese))

    [8] Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005,438(7065):197-200
    [9] Zhang YB, Tan YW, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005,438(7065):201-204
    [10] Mak KF, Lee C, Hone J, et al. Atomically thin MoS$_{2}$: A new direct-gap semiconductor. Physical Review Letters, 2010,105(13):136805
    [11] Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters, 2013,102(1):012111
    [12] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS$_{2}$ transistors. Nature Nanotechnology, 2011,6(3):147-150
    [13] Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014,9(5):372-377
    [14] Chen YB, Chen C, Kealhofer R, et al. Black Arsenic: a layered semiconductor with extreme in-plane anisotropy. Advanced Materials, 2018,30(30):1800754
    [15] Huang B, Clark G, Klein DR, et al. Electrical control of 2D magnetism in bilayer CrI$_{3}$. Nature Nanotechnology, 2018,13(7):544-548
    [16] Xi X, Zhao L, Wang Z, et al. Strongly enhanced charge-density-wave order in monolayer NbSe$_{2}$. Nature Nanotechnology, 2015,10(9):765-769
    [17] Tao J, Shen W, Wu S, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano, 2015,9(11):11362-11370
    [18] Lee S, Yang F, Suh J, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015,6(1):8573
    [19] Liu K, Wu JQ. Mechanical properties of two-dimensional materials and heterostructures. Journal of Materials Research, 2016,31(7):832-844
    [20] 郑晓静. 关于极端力学. 力学学报, 2019,51(4):1266-1272

    (Zheng Xiaojing. Extreme mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1266-1272 (in Chinese))

    [21] Akinwande D, Brennan CJ, Bunch JS, et al. A review on mechanics and mechanical properties of 2D materials - graphene and beyond. Extreme Mechanics Letters, 2017,13:42-77
    [22] 韩同伟, 贺鹏飞, 骆英 等. 石墨烯力学性能研究进展. 力学进展, 2011,41(3):279-293

    (Han Tongwei, He Pengfei, Luo Ying, et al. Research progress of the mechanical properties of graphene. Advances in Mechanics, 2011,41(3):279-293 (in Chinese))

    [23] Pharr GM, Oliver WC. Measurement of thin film mechanical properties using nanoindentation. MRS Bulletin, 1992,17(7):28-33
    [24] Chudoba T, Schwarzer N, Richter F. New possibilities of mechanical surface characterization with spherical indenters by comparison of experimental and theoretical results. Thin Solid Films, 1999, 355-356:284-289
    [25] Chudoba T, Schwarzer N, Richter F, et al. Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter. Thin Solid Films, 2000, 377-378:366-372
    [26] Chudoba T, Schwarzer N, Richter F. Determination of elastic properties of thin films by indentation measurements with a spherical indenter. Surface and Coatings Technology, 2000,127(1):9-17
    [27] Saha R, Nix WD. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002,50(1):23-38
    [28] Cao G, Gao H. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Progress in Materials Science, 2019,103:558-595
    [29] Gao Y, Kim S, Zhou S, et al. Elastic coupling between layers in two-dimensional materials. Nature Materials, 2015,14(7):714-720
    [30] Binnig G, Quate CF, Gerber C. Atomic force microscope. Physical Review Letters, 1986,56(9):930-933
    [31] Gao Y. Force microscopy of two-dimensional materials. [PhD Thesis]. Atlanta: Georgia Insititute of Technology, 2017
    [32] www.nanoworld.com
    [33] Frank IW, Tanenbaum DM, van der Zande AM, et al. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 2007,25(6):2558-2561
    [34] Cao GX, Ren YP. A paradox in mechanical property characterization of multilayer 2D materials based on existing indentation bending model. International Journal of Mechanical Sciences, 2020,187:105912
    [35] Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008,321(5887):385-388
    [36] Wan KT, Guo S, Dillard DA. A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films, 2003,425(1):150-162
    [37] Komaragiri U, Begley MR, Simmonds JG. The mechanical response of freestanding circular elastic films under point and pressure loads. Journal of Applied Mechanics, 2005,72(2):203-212
    [38] Lee GH, Cooper RC, An SJ, et al. High-strength chemical-vapor--deposited graphene and grain boundaries. Science, 2013,340(6136):1073-1076
    [39] Wang G, Dai Z, Wang Y, et al. Measuring interlayer shear stress in bilayer graphene. Physical Review Letters, 2017,119(3):036101
    [40] Wang G, Dai Z, Xiao J, et al. Bending of multilayer van der waals materials. Physical Review Letters, 2019,123(11):116101
    [41] Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS$_{2}$. ACS Nano, 2011,5(12):9703-9709
    [42] Castellanos-Gomez A, Poot M, Steele GA, et al. Elastic properties of freely suspended MoS$_{2}$ nanosheets. Advanced Materials, 2012,24(6):772-775
    [43] Liu K, Yan Q, Chen M, et al. Elastic properties of chemical-vapor-deposited monolayer MoS$_{2}$, WS$_{2}$, and their bilayer heterostructures. Nano Letters, 2014,14(9):5097-5103
    [44] Falin A, Cai Q, Santos EJG, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 2017,8(1):15815
    [45] Zhang R, Koutsos V, Cheung R. Elastic properties of suspended multilayer WSe$_{2}$. Applied Physics Letters, 2016,108(4):042104
    [46] Chitara B, Ya'akobovitz A. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale, 2018,10(27):13022-13027
    [47] Wang JY, Li Y, Zhan ZY, et al. Elastic properties of suspended black phosphorus nanosheets. Applied Physics Letters, 2016,108(1):013104
    [48] Sun Y, Pan J, Zhang Z, et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe$_{2}$. Nano Letters, 2019,19(2):761-769
    [49] Li Y, Yu C, Gan Y, et al. Elastic properties and intrinsic strength of two-dimensional InSe flakes. Nanotechnology, 2019,30(33):335703
    [50] Wang H, Sandoz-Rosado EJ, Tsang SH, et al. Elastic properties of 2D ultrathin Tungsten Nitride crystals grown by chemical vapor deposition. Advanced Functional Materials, 2019,29(31):1902663
    [51] Lipatov A, Lu H, Alhabeb M, et al. Elastic properties of 2D Ti$_{3}$C$_{2}$T$_{x}$ MXene monolayers and bilayers. Science Advances, 2018, 4(6): eaat0491
    [52] Guo L, Yan H, Moore Q, et al. Elastic properties of van der waals epitaxy grown bismuth telluride 2D nanosheets. Nanoscale, 2015,7(28):11915-11921
    [53] Niu T, Cao G, Xiong C. Fracture behavior of graphene mounted on stretchable substrate. Carbon, 2016,109:852-859
    [54] Niu T, Cao G, Xiong C. Indentation behavior of the stiffest membrane mounted on a very compliant substrate: Graphene on PDMS. International Journal of Solids and Structures, 2018, 132-133:1-8
    [55] Chen J, Guo X, Tang Q, et al. Nanomechanical properties of graphene on poly(ethylene terephthalate) substrate. Carbon, 2013,55:144-150
    [56] Zhou L, Wang Y, Cao G. Van der waals effect on the nanoindentation response of free standing monolayer graphene. Carbon, 2013,57:357-362
    [57] Zhou L, Xue J, Wang Y, et al. Molecular mechanics simulations of the deformation mechanism of graphene monolayer under free standing indentation. Carbon, 2013,63:117-134
    [58] Zhou L, Wang Y, Cao G. Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer. Journal of Physics$:$ Condensed Matter, 2013,25:475303
    [59] Bj?rkman T, Gulans A, Krasheninnikov AV, et al. Van der waals bonding in layered compounds from advanced density-functional first-principles calculations. Physical Review Letters, 2012,108(23):235502
    [60] Fan W, Zhu X, Ke F, et al. Vibrational spectrum renormalization by enforced coupling across the van der waals gap between MoS$_{2}$ and WS$_{2}$ monolayers. Physical Review B, 2015,92(24):241408
    [61] Wang Y, Zhou X, Jin J, et al. Strain-dependent Raman analysis of the G* band in graphene. Physical Review B, 2019,100:241407
    [62] Zhang Z, Zhang X, Wang Y, et al. Crack propagation and fracture toughness of graphene probed by raman spectroscopy. ACS Nano, 2019,13:10327-10332
    [63] Wang Y, Wang Y, Xu C, et al. Domain-boundary independency of Raman spectra for strained graphene at strong interfaces. Carbon, 2018,134:37-42
    [64] Lin ML, Chen T, Lu W, et al. Identifying the stacking order of multilayer graphene grown by chemical vapor deposition via Raman spectroscopy. Journal of Raman Spectroscopy, 2018,49:46-53
    [65] Wu Z, Zhang X, Das A, et al. Step-by-step monitoring of CVD-graphene during wet transfer by Raman spectroscopy. RSC Advances, 2019,9:41447-41452
    [66] Cellini F, Gao Y, Riedo E. Å-indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. Scientific Reports, 2019,9(1):4075
    [67] Song JH, Wang XD, Riedo E, et al. Elastic property of vertically aligned nanowires. Nano Letters, 2005,5(10):1954-1958
    [68] Palaci I, Fedrigo S, Brune H, et al. Radial elasticity of multiwalled carbon nanotubes. Physical Review Letters, 2005,94(17):175502
    [69] Lucas M, Mai W, Yang R, et al. Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Letters, 2007,7(5):1314-1317
    [70] Lucas M, Leach AM, McDowell MT, et al. Plastic deformation of pentagonal silver nanowires: comparison between AFM nanoindentation and atomistic simulations. Physical Review B, 2008,77(24):245420
    [71] Narayan J, Gupta S, Bhaumik A, et al. Q-carbon harder than diamond. MRS Communications, 2018,8(2):428-436
    [72] 任云鹏, 曹国鑫. 褶皱与晶界偶合作用对石墨烯断裂行为的影响. 力学学报, 2019,51(5):1381-1392

    (Ren Yunpeng, Cao Guoxin. Coupling effects of wrinkles and grain boundary on the fracture of graphene. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1381-1392 (in Chinese))

    [73] Lin QY, Jing G, Zhou YB, et al. Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano, 2013 7(2):1171-1177
    [74] Ren YP, Cao GX. Adhesive boundary effect on free-standing indentation characterization of chemical vapor deposition graphene. Carbon, 2019,153:438-446
    [75] 李东波, 刘秦龙, 张鸿驰 等. 基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究. 力学学报, 2019,51(5):1393-1402

    (Li Dongbo, Liu Qinlong, Zhang Hongchi, et al. Study on tensile fracture behavior and mechanical properties of GO based on molecular dynamics method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1393-1402 (in Chinese))

    [76] Rajasekaran S, Abild-Pedersen F, Ogasawara H, et al. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Physical Review Letters, 2013,111(8):085503
    [77] Kvashnin AG, Chernozatonskii LA, Yakobson BI, et al. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Letters, 2014,14(2):676-681
    [78] Martins LGP, Matos MJS, Paschoal AR, et al. Raman evidence for pressure-induced formation of diamondene. Nature Communications, 2017,8(1):96
    [79] Bakharev PV, Huang M, Saxena M, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nature Nanotechnology, 2020,15(1):59-66
    [80] Gao Y, Cao TF, Cellini F, et al. Ultrahard carbon film from epitaxial two-layer graphene. Nature Nanotechnology, 2018,13(2):133-138
    [81] Cellini F, Lavini F, Cao TF, et al. Epitaxial two-layer graphene under pressure: diamene stiffer than diamond. Flat Chem, 2018,10:8-13
    [82] Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010,5(10):722-726
    [83] Ponomarenko LA, Gorbachev RV, Yu GL, et al. Cloning of Dirac fermions in graphene superlattices. Nature, 2013,497(7451):594-597
    [84] Geim AK, Grigorieva IV, Van der Waals heterostructures. Nature, 2013,499(7459):419-425
    [85] Liu Y, Weiss NO, Duan X, et al. Van der Waals heterostructures and devices. Nature Reviews Materials, 2016,1(9):16042
    [86] Yankowitz M, Ma Q, Jarillo-Herrero P, et al. Van der waals heterostructures combining graphene and hexagonal boron nitride. Nature Reviews Physics, 2019,1(2):112-125
    [87] Jin CH, Regan EC, Yan A, et al. Observation of moiré excitons in WSe$_{2}$/WS$_{2}$ heterostructure superlattices. Nature, 2019,567(7746):76-80
    [88] Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018,556(7699):80-84
    [89] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018,556(7699):43-50
    [90] 李正, 杨庆生, 尚军军 等. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能. 力学学报, 2020,52(6):1700-1708

    (Li Zheng, Yang Qingsheng, Shang Junjun, et al. Piezoresistive sensing mechanism and piezoresistive performance of in-plane random stacked graphene composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1700-1708 (in Chinese))

  • 期刊类型引用(8)

    1. 时朋朋,李艳,丁生虎,李星. 弹性微梁与椭圆柱压头的压痕问题解析解. 中国科学:物理学 力学 天文学. 2023(01): 105-118 . 百度学术
    2. 陈一唯. 原子力显微镜在二维材料领域的应用. 信息记录材料. 2023(01): 45-47+50 . 百度学术
    3. 薛卓,曾巍,周琨杰,沈琛,杨展荣,朱竞一,王胜. 先进原子力显微术在表征二维材料物性中的应用. 科学通报. 2023(31): 4152-4169 . 百度学术
    4. 王晓萌,高扬. 基于原子力显微镜的压痕技术及其应用. 高压物理学报. 2023(06): 45-59 . 百度学术
    5. 单齐冀,韩瑶,张莹,李慧琴. 基于原子力显微镜的压痕模式和双模纳米力学模式在模量表征中的影响因素. 电子显微学报. 2022(02): 154-160 . 百度学术
    6. 陈珊,彭金峰,黄乐,曾辛,李立豪,何文远,郑学军. 有限厚度模型校准二维MoS_2的Bimodal-AFM杨氏模量测量. 力学学报. 2022(05): 1264-1273 . 本站查看
    7. 刘丹,谭和平,黄丽萍,康迪迪,郜忠茹,王欣. 石墨烯聚氯乙烯复合材料的制备及其性能研究. 江苏理工学院学报. 2021(02): 95-101 . 百度学术
    8. 赵亚鹏,刘乐乐,孔亮,刘昌岭,吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报. 2021(08): 2119-2140 . 本站查看

    其他类型引用(15)

计量
  • 文章访问数:  4186
  • HTML全文浏览量:  1016
  • PDF下载量:  1259
  • 被引次数: 23
出版历程
  • 收稿日期:  2020-10-12
  • 刊出日期:  2021-04-09

目录

    /

    返回文章
    返回