VORTEX-INDUCED VIBRATION AND WAKE TRACING MECHANISM OF HARBOR SEAL WHISKER: A DIRECT NUMERICAL SIMULATION
-
摘要: 在视力和听力受到限制的条件下, 斑海豹可以通过具有特殊外形的胡须识别和追踪水中游鱼的尾迹. 从仿生学的角度, 对斑海豹胡须在尾迹流场中的振动特性和循迹机理进行研究, 有助于开发研制新型水下探测器. 本文采用嵌入式迭代浸入边界法,在雷诺数$Re=300$和折合流速$U_{\rm r}=6.0$的条件下, 对均匀流场和尾迹流场中斑海豹胡须模型的涡激振动进行直接数值模拟,研究了胡须模型的振动特征和尾涡结构, 并与具有相同等效直径的圆柱、椭圆柱的振动响应进行对比, 分析了不同结构外形对振动特性和尾涡结构的影响, 探讨了斑海豹胡须的感知能力和循迹机理. 模拟结果表明, 胡须结构具有显著的减阻、抑振作用, 在均匀流场中做微幅混沌运动, 这为斑海豹胡须感知提供了纯净的信号背景. 而在尾迹流场中,胡须结构的振动响应显著增强, 稳定且周期性好, 与其他柱体相比, 具有更高的信噪比和敏感度. 这揭示了斑海豹利用胡须振动识别和追踪水中游鱼尾迹的机理, 对于开发研制新型水下探测器具有重要借鉴意义.Abstract: Even without eyesight and hearing, harbor seal can identify and track the wake of swimming fish in the water by its whiskers with a special shape. From the biomimetic point of view, study on the vibration responses and the tracking mechanisms of harbor seal whisker in wake flow contributes to the development of a new-type underwater sensor. In this paper, direct numerical simulation of the vortex-induced vibration of the harbor seal whisker in uniform and wake flow with a Reynolds number of $Re=300$ and a reduced velocity of $U_{\rm r}=6.0$ was performed by applying the iterative immersed boundary method. The vibration characteristics and the wake structures of the whisker models are investigated and compared with those of a circular cylinder and an elliptical cylinder with the same equivalent diameter. The effects of different structural shapes on the vibration characteristics and wake structures are analyzed, and the sensing ability and tracking mechanisms of the harbor seal whisker are discussed. The simulation results show that the whisker model can significantly reduce the drag force and suppress the vibration responses in uniform flow. It undergoes a chaos motion with a very low amplitude, which provides a pure signal background for harbor seal's whisker for sensoring. However, in wake flow, the vibration response of the whisker model increases significantly, being stable and periodic. As a result, the whisker model has a higher signal-to-noise ratio and sensitivity than other cylinders. This reveals the mechanism of harbor seal using its whiskers to identify and track the wake of swimming fish in the water, which is of great significance for the development of a new-type underwater detector.
-
Keywords:
- bionics /
- harbor seal /
- whisker /
- vortex-induced vibration /
- immersed boundary method
-
-
[1] Dehnhardt G, Mauck B, Hanke W, et al. Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science, 2001,293(5527):102-104 [2] Wieskotten S, Dehnhardt G, Mauck B. et al. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). Journal of Experimental Biology, 2010,213(13):2194-2200 [3] Wieskotten S, Dehnhardt G, Mauck B. et al. The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). Journal of Experimental Biology, 2010,213(21):3734-3740 [4] Dehnhardt G, Mauck B, Bleckmann H. Seal whiskers detect water movements. Nature, 1998,394(6690):235-236 [5] Schulte-Pelkum N, Wieskotten S, Hanke W. et al. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). Journal of Experimental Biology, 2007,210(5):781-787 [6] Dehnhardt G, Kaminski A. Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. Journal of Experimental Biology, 1995,198(11):2317-2323 [7] 李文. 海豹"胡须技术"或将成潜艇"杀手". 中国国防报, 2018-08-21(004) (Li Wen. Seal whisker technology may become a submarine killer. China National Defense Daily, 2018-08-21(004)(in Chinese))
[8] Hanke W, Wieskotten S, Niesterok B. et al. Hydrodynamic perception in pinnipeds. Nature-Inspired Fluid Mechanics, 2012: 255-270 [9] Murphy C T, Eberhardt W C, Calhoun B H. et al. Effect of angle on flow-induced vibrations of pinniped vibrissae. Plos One, 2013,8(7):e69872 [10] Hanke W, Witte M, Miersch L. et al. Harbor seal vibrissa morphology suppresses vortex-induced vibrations. Journal of Experimental Biology, 2010,213(15):2665-2672 [11] Witte M, Hanke W, Wieskotten S. et al. On the wake flow dynamics behind harbor seal vibrissae-a fluid mechanical explanation for an extraordinary capability. Nature-Inspired Fluid Mechanics, 2012: 271-289 [12] 陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响. 力学学报, 2019,51(2):432-440 (Chen Weilin, Ji Chunning, Xu Dong. Effects of the added cylinders with different control angles on the vortex-induced vibrations of a circular cylinder. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(2):432-440(in Chinese))
[13] 刘俊, 高福平. 近壁面柱体涡激振动的迟滞效应. 力学学报, 2019,51(6):1630-1640 (Liu Jun, Gao Fuping, Hysteresis in vortex-induced vibrations of a near-wall cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1630-1640 (in Chinese))
[14] 杨明, 刘巨保, 岳欠杯 等. 涡激诱导并列双圆柱碰撞数值模拟研究. 力学学报, 2019,51(6):1785-1796 (Yang Ming, Liu jubao, Yue Qianbei, et al. Numerical simulation on the vortex-induced collision of two side-by-side cylinders. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(6):1785-1796 (in Chinese))
[15] Beem H, Hildner M, Triantafyllou M. Calibration and validation of a harbor seal whisker-inspired flow sensor. Smart Materials and Structures, 2012,22(1):014012 [16] Hans H, Miao J, Triantafyllou M. Characterization of von Kármán street with seal whisker-like sensor//Conference of Sensors, IEEE, 2012: 1-4 [17] Eberhardt WC, Wakefield BF, Murphy CT. et al. Development of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array. Bioinspiration & Biomimetics, 2016,11(5):056011 [18] Beem HR, Triantafyllou MS. Wake-induced `slaloming' response explains exquisite sensitivity of seal whisker-like sensors. Journal of Fluid Mechanics, 2015,783:306-322 [19] Morrison HE, Brede M, Dehnhardt G. et al. Simulating the flow and trail following capabilities of harbour seal vibrissae with the Lattice Boltzmann Method. Journal of Computational Science, 2016,17:394-402 [20] Hans H, Miao J, Weymouth G, et al. Whisker-like geometries and their force reduction properties//Oceans-Bergen, MTS/IEEE, 2013: 1-7 [21] Wang S, Liu Y. Wake dynamics behind a seal-vibrissa-shaped cylinder: a comparative study by time-resolved particle velocimetry measurements. Experiments in Fluids, 2016,57(3):32 [22] 王少飞. 海豹胡须柱状结构的仿生涡激振动流动控制机制实验研究. [博士论文]. 上海: 上海交通大学, 2017 (Wang Shaofei. Bionic fluid control of vortex-induced vibration inspired by the seal-vibrissa-shaped-cylinder. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2017(in Chinese))
[23] Ji C, Munjiza A, Williams JJR. A novel iterative direct-forcing immersed boundary method and its finite volume applications. Journal of Computational Physics, 2012,231(4):1797-1821 [24] Chen W, Ji C, Xu W. et al. Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow. Journal of Fluids and Structures, 2015,55:218-236 [25] Rinehart A, Shyam V, Zhang W. Characterization of seal whisker morphology: implications for whisker-inspired flow control applications. Bioinspiration & Biomimetics, 2017,12(6):066005 [26] Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995,285:69-94 [27] Williamson CHK. Three-dimensional wake transition. Advances in Turbulence VI, 1996: 399-402 [28] Jiang H, Cheng L, Draper S. et al. Three-dimensional direct numerical simulation of wake transitions of a circular cylinder. Journal of Fluid Mechanics, 2016,801:353-391 [29] Leontini JS, Jacono DL, Thompson MC. et al. Stability analysis of the elliptic cylinder wake. Journal of Fluid Mechanics, 2015: 302-321 [30] Williamson CHK, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988,2(4):355-381 [31] Morse TL, Williamson CHK. Prediction of vortex-induced vibration response by employing controlled motion. Journal of Fluid Mechanics, 2009,634:5-39. [32] Singh SP, Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes. Journal of Fluids and Structures, 2005,20(8):1085-1104 [33] Du L, Jing X, Sun X. Modes of vortex formation and transition to three-dimensionality in the wake of a freely vibrating cylinder. Journal of Fluids and Structures, 2014,49:554-573 [34] Gerrard JH. The mechanics of the formation region of vortices behind bluff bodies. Journal of Fluid Mechanics, 1966,25(2):401-413 [35] Jones A, Marshall CD. Does vibrissal innervation patterns and investment predict hydrodynamic trail following behavior of harbor seals (Phoca vitulina)? The Anatomical Record, 2019,302(10):1837-1845 -
期刊类型引用(3)
1. 杨加栋,张晓灵,吴文通,孔瑞林,王铭浩,陈东阳. 海洋柔性柱体涡激振动抑制装置研究进展. 舰船科学技术. 2023(02): 91-95 . 百度学术
2. 宋立群,及春宁,袁德奎,许栋,张晓娜,卫昱含,殷彤. 弹性支撑斑海豹胡须模型单自由度流致振动实验研究. 力学学报. 2022(03): 653-668 . 本站查看
3. 张义昌,王贵春. 斜拉桥覆冰拉索涡激振动数值模拟. 交通科技与经济. 2022(05): 50-57 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1520
- HTML全文浏览量: 383
- PDF下载量: 745
- 被引次数: 7