ANALYSIS OF THE PROMOTING EFFECT OF ANNULAR GROOVE ON THE COALESCENCE OF VENTILATED CAVITY
-
摘要: 航行体出水过程中肩部的自然空化将影响航行体的载荷分布及出水姿态,工程上常采用肩部开孔通气的方式改善航行体表面的力学环境, 进而解决此类问题.本文针对水下航行体通气空泡周向融合效果不理想问题, 基于有限体积法,采用VOF (volume of fluid)多相流模型和动态铺层的动网格技术,数值研究了排气孔下游增加小尺度环形凹槽促进空泡融合的作用机制,以及不同发展阶段、不同工况下环形凹槽对空泡融合的促进作用. 结果表明,凹槽可以有效改善通气空泡的融合效果.运动坐标系下来流经过环形凹槽时因为流动膨胀发生了边界层的流动分离,其诱导产生的卷吸作用一方面迟滞了空泡的轴向发展,促进空泡产生周向尺寸更大的剪切涡并沿周向膨胀发展,另一方面将部分通气气体吸入环形凹槽,吸入槽内的气体通过挤压破碎实现了周向融合,且槽内融合气泡溢出下泄促进融合边界上移. 此外,凹槽可以通过改善空泡内部的流动状态,使空泡的形态和内部压力在不同工况下都更加稳定.Abstract: The load distribution and the water-existing attitude of the vehicle will be affected by the natural cavitation on the shoulder of vehicles during the water-exit process. In engineering, active ventilation by opening vent at shoulder is often employed to improve the mechanical environment of vehicle surface so as to solve such problems. This article is aimed at solving the problem that the ventilated cavity circumferential coalescence of underwater vehicles is unsatisfactory. Using the VOF (volume of fluid) multi-phase flow model and dynamic grid technique of dynamic layering based on finite volume method, the mechanism of adding a small-scale annular groove at the downstream of the vent to promote the cavity coalescence was numerically investigated. And the promotion effect of the annular groove on cavity coalescence at different development stages and different working conditions was also studied. The results show that the cavity coalescence is greatly improved by the annular groove. Flow separation in boundary layer occurs when the incoming flow passes through the annular groove in the moving coordinate system because of flow expansion. The induced entrainment of annular groove, on the one hand, retards the axial development of cavity, and promotes the generation of a larger circumferential shear vortex along with expanding in the circumferential direction. On the other hand, part of the ventilation gas is sucked into the annular groove. The gas sucked into the groove is squeezed and broken contributing to the circumferential coalescence. The coalescence cavity in the groove overflows and leaks to promote the upward movement of the cavity coalescence boundary. In addition, under different working conditions, the shape and internal pressure of the cavity become more stable for the groove improving the internal flow state of the cavity.
-
-
[1] 王一伟, 黄晨光, 杜特专 等. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012,41(1):39-48 (Wang Yiwei, Huang Chenguang, Du Tezhuan, et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics. 2012,44(1):39-48 (in Chinese))
[2] Shao SY, Balakrishna A, Yoon K. et al. Effect of mounting strut and cavitator shape on the ventilation demand for ventilated supercavitation. Experimental Thermal And Fluid Science, 2020,118:10173 [3] Ludar LA, Gany A. Experimental study of supercavitation bubble development over bodies in a duct flow. Journal of Marine Science and Engineering, 2020,8(1):1-11 [4] Smith SM, Venning JA, Pearce BW. et al. The influence of fluid-structure interaction on cloud cavitation about a stiff hydrofoil. Part 1. Journal of Fluid Mechanics, 2020,896:1-35 [5] 权晓波, 李岩, 魏海鹏 等. 航行体出水过程空泡溃灭特性研究. 船舶力学, 2008,12(4):545-549 (Quan Xiaobo, Li Yan, Wei Haipeng, et al. Cavitation collapse characteristic research in the out-of-water progress of underwater vehicles. Journal of Ship Mechanics. 2008,12(4):545-549 (in Chinese))
[6] 张佳悦, 李达钦, 吴钦 等. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报, 2019,15(3):803-812 (Zhang Jiayue, Li Daqin, Wu Qin, et al. Numerical investigation on cavity structures and hydrodynamics of the vehicle during vertical water-entry. Chinese Journal of Theoretical and Applied Mechanics. 2019,15(3):803-812 (in Chinese))
[7] 王巍, 唐滔, 卢盛鹏 等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019,51(6):1752-1760 (Wang Wei, Tang Tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(6):1752-1760 (in Chinese))
[8] 郭文璐, 李泓辰, 王静竹 等. 单空泡与自由液面相互作用规律研究进展. 力学学报, 2019,51(6):1682-1698 (Guo Wenlu, Li Hongchen, Wang Jingzhu, et al. Research progress on interaction between a single cavitation and free surface. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(6):1682-1698 (in Chinese))
[9] Huang C, Luo K, Qin K. et al. Performance comparison of bow and stern rudder for high-speed supercavitating vehicles. Mathematical Problems in Engineering, 2020,8630842:1-17 [10] 刘明, 安伟光, 宋向华. 随机参数超空泡射弹的动力稳定性和可靠性. 爆炸与冲击, 2013,33(5):525-530 (Liu Ming, An Weiguang, Song Xianghua. Dynamic stability and reliability of a supercavitating projectile with stochastic parameters. Explosion And Shock Waves, 2013,33(5):525-530 (in Chinese))
[11] Reichardt H. The laws of cavitation bubbles at axially Symmetrical bodies in A flow//Ministry of Aircraft Productuin (Great Britian), Reports and Translations 1946,766:322-326 [12] Zhao XY, Xiang M, Zhou HC. et al. Numerical investigation and analysis of the unsteady supercavity flows with a strong gas jet. Journal of Applied Fluid Mechanics, 2020,13(4):1323-1337 [13] Zhang W, Liu C, Zhang B, et al. Numerical study on the influence of convergent-divergent nozzle structures on the in-nozzle flow and jet breakup based on the openform. Sae Technical Papers, 2020-01-1156, 2020 [14] Wan C, Wang B, Wang Q. et al. Probing and imaging of vapor-water mixture properties inside partial/cloud cavitating flows. Journal of Fluids Engineering, 2017,139(3):031303 [15] 季斌, 程怀玉, 黄彪 等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019,49(1):201906 (Ji Bin, Cheng Huaiyu, Huang Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics. 2019,49(1):201906 (in Chinese))
[16] 王国玉, 崔震宇, 黄彪 等. 孔板通气气液两相流动特性研究. 北京理工大学学报, 2017,37(1):42-45 (Wang Guoyu, Cui Zhenyu, Huang Biao, et al. Analysis on gas-liquid two-phase flows characteristics around a plane. Transactions of Beijing Institute of Technology. 2017,37(1):42-45 (in Chinese))
[17] 王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究. 力学学报, 2020,52(1):31-39 (Wang Yuerou, Wang Junfeng, Liu Hailong. Numerical simulation on bubble rinsing behaviors under electric field. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(1):31-39 (in Chinese))
[18] 陈玮琪, 王宝寿, 颜开 等. 空化器出水非定常垂直空泡的研究. 力学学报, 2013,45(1):76-82 (Chen Weiqi, Wang Baoshou, Yan Kai, et al. Study on the unsteady vertical cavity of the exit-water cavitor. Chinese Journal of Theoretical and Applied Mechanics. 2013,45(1):76-82 (in Chinese))
[19] 张忠宇, 姚熊亮, 张阿漫. 小攻角下三维细长体定常空化形态研究. 物理学报, 2013,62(20):204701 (Zhang Zhongyu, Yao Xiongliang, Zhang Aman. Cavitation shape of the three-dimensi-onal slender at a small attack angle in a steady flow. Acta Phys. Sin. , 2013,62(20):204701 (in Chinese))
[20] 秦勇. 均压气体对考虑波浪的航行体水动力特性影响机制研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2014 (Qin Yong. Effect of gas exhausting on hydrodynamic characteristic of underwater vehicle considering wave. [Master Thesis]. Harbin: Harbin Institute of Technology, 2014 (in Chinese))
[21] 张耐民, 赵阳, 魏海鹏 等. 水下垂直发射航行体多孔排气气泡融合特性研究. 船舶力学, 2018,22(2):135-143 (Zhang Naimin, Zhao Yang, Wei Haipeng, et al. Study on air bleed fusion characteristics of vertically launched underwater vehicle. Journal of Ship Mechanics. 2018,22(2):135-143 (in Chinese))
[22] 张耐民. 水下航行体边界层通气流体动力及弹道特性研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2017 (Zhang Naimin. Research on multiphase hydrodynamic and attitude of submarine launched vehicle with boundary layer ventilation. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
[23] 张孝石, 王聪, 张耐民 等. 通气航行体表面压力脉动特性实验研究. 振动与冲击, 2017,36(17):85-90 (Zhang Xiaoshi, Wang Cong, Zhang Naimin, et al. Test for fluctuating characteristics around a ventilated underwater vehicle. Journal of Vibration And Shock. 2017,36(17):85-90 (in Chinese))
[24] 张孝石, 许昊, 王聪 等. 水流冲击超声速气体射流实验研究. 物理学报, 2017,66(5):054702 (Zhang Xiaoshi, Xu Hao, Wang Cong, et al. Experimental study on underwater supersonic gas jets in water flow. Acta Phys. Sin. , 2017,66(5):054702 (in Chinese))
[25] 胡少峰. 高速出水航行体表面均匀排气控制方法实验研究. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2018 (Hu Shaofeng. Experiment study on control method of uniformly ventilated cavitation on the surface of high-speed exceeding water vehicle. [Master Thesis]. Harbin: Harbin Engineering University, 2018 (in Chinese))
[26] 龚瑞岩. 均压排气气泡在水下航行体表面的融合特性研究. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2018 (Gong Ruiyan. Study on coalescence characteristics of pressure equalizing exhaust bubbles on the surface of underwater vehicles. [Master Thesis]. Harbin: Harbin Engineering University, 2018(in Chinese))
[27] 马贵辉, 陈浮, 俞建阳. 气孔排数对带排气航行体绕流流动影响研究. 工程热物理学报, 2018,39(9):1945-1951 (Ma Guihui, Chen Fu, Yu Jianyang. Effect of number of rows of venting holes on flow around an underwater vehicle with pressure-equalizing exhaust. Journal of Engineering Thermophysics. 2018,39(9):1945-1951 (in Chinese))
[28] 马贵辉. 等压排气改善潜射航行体出水特性及稳健性机理研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2018 (Ma Guihui. Mechanisms of improving the water exit characteristics and robustness of underwater launched vehicles with pressure-equalizing exhaust. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2018 (in Chinese))
[29] 崔震宇. 水下发射航行体通气空泡流动特性研究. [硕士论文]. 北京: 北京理工大学, 2016 (Cui Zhenyu. Study on flow characteristics of ventilated cavitation around the submarine launched vehicle. [Master Thesis]. Beijing: Beijing Institute of Technology, 2016 (in Chinese))
[30] 陈国定. 后台阶流动控制研究. [硕士论文]. 南京: 南京航空航天大学, 2012 (Chen Guoding. Research on the backward-facing step flow control. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese))
-
期刊类型引用(6)
1. 姚熊亮,赵斌,马贵辉. 跨介质航行体出水问题研究现状与展望. 航空学报. 2024(14): 1-26 . 百度学术
2. 高山,施瑶,潘光,权晓波. 不同通气量下双发航行体水下齐射降载增稳特性研究. 工程力学. 2024(10): 247-256 . 百度学术
3. 付志强,李志鹏,孙龙泉,胡承龙. 碎冰对出水航行体载荷特性影响试验研究. 力学学报. 2024(11): 3188-3201 . 本站查看
4. 任泽宇,王小刚,权晓波,程少华. 垂直发射条件下水下航行体头型对通气空泡流动及压力特性的影响分析. 力学学报. 2023(11): 2518-2530 . 本站查看
5. 马学忠,孟祥铠. 瑞利台阶型机械密封端面环形槽的空化诱导机理分析. 机械工程学报. 2022(13): 166-174 . 百度学术
6. 任泽宇,孙龙泉,姚熊亮,赵纪鹏. 凹槽参数对通气空泡融合的影响. 宇航总体技术. 2021(03): 28-36 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1072
- HTML全文浏览量: 187
- PDF下载量: 99
- 被引次数: 10