EI、Scopus 收录
中文核心期刊

基于改进人工势函数的航天器近距离安全控制方法

许丹丹, 张进

许丹丹, 张进. 基于改进人工势函数的航天器近距离安全控制方法[J]. 力学学报, 2020, 52(6): 1581-1589. DOI: 10.6052/0459-1879-20-112
引用本文: 许丹丹, 张进. 基于改进人工势函数的航天器近距离安全控制方法[J]. 力学学报, 2020, 52(6): 1581-1589. DOI: 10.6052/0459-1879-20-112
Xu D, an. A COLLISION-AVOIDANCE CONTROL ALGORITHM FOR SPACECRAFT PROXIMITY OPERATIONS BASED ON IMPROVED ARTIFICIAL POTENTIAL FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1581-1589. DOI: 10.6052/0459-1879-20-112
Citation: Xu D, an. A COLLISION-AVOIDANCE CONTROL ALGORITHM FOR SPACECRAFT PROXIMITY OPERATIONS BASED ON IMPROVED ARTIFICIAL POTENTIAL FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1581-1589. DOI: 10.6052/0459-1879-20-112
许丹丹, 张进. 基于改进人工势函数的航天器近距离安全控制方法[J]. 力学学报, 2020, 52(6): 1581-1589. CSTR: 32045.14.0459-1879-20-112
引用本文: 许丹丹, 张进. 基于改进人工势函数的航天器近距离安全控制方法[J]. 力学学报, 2020, 52(6): 1581-1589. CSTR: 32045.14.0459-1879-20-112
Xu D, an. A COLLISION-AVOIDANCE CONTROL ALGORITHM FOR SPACECRAFT PROXIMITY OPERATIONS BASED ON IMPROVED ARTIFICIAL POTENTIAL FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1581-1589. CSTR: 32045.14.0459-1879-20-112
Citation: Xu D, an. A COLLISION-AVOIDANCE CONTROL ALGORITHM FOR SPACECRAFT PROXIMITY OPERATIONS BASED ON IMPROVED ARTIFICIAL POTENTIAL FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1581-1589. CSTR: 32045.14.0459-1879-20-112

基于改进人工势函数的航天器近距离安全控制方法

基金项目: 1) 国家自然科学基金资助项目(11572345)
详细信息
    作者简介:

    3) 张进, 副教授, 主要研究方向: 航天飞行任务规划. E-mail: zhangjin@nudt.ed.cn
    2) 许丹丹, 助教, 主要研究方向: 航天动力学与控制. E-mail: 1106124587@qq.com;

    通讯作者:

    许丹丹

    许丹丹,张进

  • 中图分类号: V412.4

A COLLISION-AVOIDANCE CONTROL ALGORITHM FOR SPACECRAFT PROXIMITY OPERATIONS BASED ON IMPROVED ARTIFICIAL POTENTIAL FUNCTION

  • 摘要: 针对航天器近距离操作的安全问题,提出了一种基于人工势函数改进的碰撞规避控制算法.根据航天器与目标、障碍物之间的实时状态, 利用人工势函数算法,计算航天器的实时加速度, 规划航天器的轨迹. 为改进人工势函数方法的适用性,提出三个方面的改进措施: 首先, 在人工势函数算法中, 为提高碰撞预警的准确性,减少额外机动, 碰撞预警采用碰撞概率代替相对距离. 其次, 为了提高对接安全,降低接近目标航天器的相对速度, 利用相对速度的安全接近走廊来计算目标排斥力.最后, 针对大多航天器不能提供任意连续变化推力的情况, 设置两种实用的推力形式,如bang-bang控制的推力形式和恒定变化率的推力形式, 代替连续变推力形式.通过对不同算例的比较,成功地揭示了主要任务参数(如碰撞预警方法、速度安全边界和实际加速度形式)对近距离操作安全的影响.结果表明, 该方法可以提高航天器近距离操作的安全性、效率性, 并且结构简单,实时性强.
    Abstract: Aiming at the proximity operation of spacecraft, a collision-avoidance control algorithm based on improved Artificial Potential Fields (APF) method is proposed. According to the real-time state between the spacecraft and the target and obstacles, the APF method is used to calculate the real-time acceleration of the spacecraft, and the trajectory of the spacecraft is planned. In order to improve the applicability of the artificial potential function method, three improvement measures are proposed. First, in order to improve the accuracy of collision warning and reduce additional maneuvers, the collision probability combined with the relative distance, instead of only the relative distance, is used to evaluate the collision. Second, in order to increase the docking safety and slow down the approaching relative velocity, the safety boundary and control margin of relative velocity are used to calculate the target repulsion force. Third, in view of the fact that most spacecraft cannot provide any continuously varying thrust, two practical thrust forms, including the thrust with upper limit and constant variation rate and the bang-bang thrust, are used to substitute for the continuously variable thrust form. Numerical simulations are executed to validate the proposed method. The effects of the major mission parameters, such as the collision warning method, the target repulsion acceleration and acceleration forms, are successfully revealed by the comparison between different examples. The results show that the proposed method can improve the safety and efficiency of the spacecraft proximity operations, and has simple structure and strong real-time performance.
  • [1] Schulte PZ, Spencer DA. Development of an integrated spacecraft guidance, navigation, and control subsystem for automated proximity operations. Acta Astronautica, 2016,118:168-186
    [2] Zhang J, Chu X, Zhang Y, et al. Safe-trajectory optimization and tracking control in ultra-close proximity to a failed satellite. Acta Astronautica, 2018,144:339-352
    [3] Romano M, Friedman DA, Shay TJ. Laboratory experimentation of autonomous spacecraft approach and docking to a collaborative target. Journal of Spacecraft and Rockets, 2017,1(44):164-173
    [4] 罗刚桥. 美俄碰撞分析与启示. 国际太空, 2009(6):23-27
    [4] ( Luo Gangqiao. Analysis and enlightenment of US-Russia satellite collision. Space International, 2009(6):23-27 (in Chinese))
    [5] Roger W. A catalog of NASA-related case studies. America: National Aeronautics and Space Administration, Goddard Space Flight Center, Office of the Chief Knowledge Officer, September, 2011
    [6] Khatib O. Real-time obstacle avoidance for manipulators and mobile Robots. IEEE International Conference on Robotics & Automation, 2003,2(1):90-98
    [7] McInnes CR. Autonomous proximity maneuvering using artificial potential functions. European Space Agency Journal, 1993,2(17):159-169
    [8] McInnes CR. Distributed control of maneuvering vehicles for on-orbit assembly. Journal of Guidance Control and Dynamics, 2015,18(5):1204-1206
    [9] Patel P, Udrea B, Nayak M. Optimal guidance trajectories for a nanosat docking with a non-cooperative resident space object// 2015 IEEE Aerospace Conference, USA, 7-14 March 2015,2015:1-11
    [10] Chen T, Wen H, Hu H, et al. On-orbit assembly of a team of flexible spacecraft using potential field based method. Acta Astronautica, 2017,133:221-232
    [11] Neubauer JS, Swartwout MA. Controlling swarms of bandit inspector spacecraft// Proceedings of the 20th Annual AIAA/USU Conference on Small Satellites, Logan, UT, August 2006
    [12] McCamish S B, Romano M, Yun X. Autonomous distributed control of simultaneous multiple spacecraft proximity maneuvers. IEEE Transactions on Automation Science and Engineering, 2010,7(3):630-644
    [13] Nastasi KM, Thomas DJ, Tetreault K, et al. Real-time optimal control & tracking of autonomous micro-satellite proximity operations// AIAA SPACE 2016, Long Beach, California, 13-16 September 2016
    [14] Bevilacqua R, Lehmann T, Romano M. Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft. Acta Astronautica, 2011,68:1260-1275
    [15] Palacios L, Ceriotti M, Radice G. Close proximity formation flying via linear quadratic tracking controller and artificial potential function. Advances in Space Research, 2015,10(6):2167-2176
    [16] Wang Y, Bai YZ, Xing JJ, et al. Equal-collision-probability-curve method for safe spacecraft close-range proximity maneuvers. Advances In Space Research, 2018,62:2599-2619
    [17] Spencer DA, Chait SB, Schulte PZ, et al. Prox-1 university-class mission to demonstrate automated proximity operations. Journal of Spacecraft and Rockets, 2016,53(5):1-17
    [18] Schulte PZ, Spencer DA. Development of an integrated spacecraft guidance, navigation control subsystem for automated proximity operations. Acta Astronautica, 2016,118:168-186
    [19] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169
    [19] ( Zhu An, Chen Li. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))
    [20] 艾海平, 陈力. 含弹簧缓冲装置空间机器人捕获卫星操作基于动态面的避撞从顺控制. 力学学报, 2020,52(4):975-984
    [20] ( Ai Haiping, Chen Li. Collision avoidance compliance control based on dynamic surface of space robot with spring buffer device for capturing satellite operation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):975-984 (in Chinese))
    [21] 孙振江. 共位约束静止轨道交会安全评价与任务规划. [硕士论文]. 长沙: 国防科技大学, 2014
    [21] ( Sun Zhenjiang. Safety assessment and mission planning for GEO rendezvous under spacecraft colocation constraints. [Master Thesis]. Changsha: National University of Defense Technology, 2014 (in Chinese))
    [22] 梁立波, 罗亚中, 王华 等. 空间交会轨迹安全性定量评价指标研究. 宇航学报, 2010,31(10):2239-2244
    [22] ( Liang Libo, Luo Yazhong, Wang Hua, et al. Study on the quantitative performance index of space rendezvous trajectory safety. Journal of Astronautics, 2010,31(10):2239-2244 (in Chinese))
    [23] 倪庆. 航天器近距离相对运动安全控制技术. 长沙: 国防科技大学, 2016
    [23] ( Ni Qing. Safety guidance and control for spacecraft close proximity maneuvers. Changsha: National University of Defense Technology, 2016 (in Chinese))
    [24] 杨维维, 赵勇, 陈小前 等. 航天器碰撞概率计算方法研究进展. 中国空间科学技术, 2012,6:8-15
    [24] ( Yang Weiwei, Zhao Yong, Chen Xiaoqian, et al. Research progress on calculating methods of spacecraft collision probability. Chinese Space Science and Technology, 2012,6:8-15 (in Chinese))
  • 期刊类型引用(3)

    1. 高婉莹,吴健发,魏春岭. 航天器威胁规避自主决策规划方法研究综述. 中国空间科学技术(中英文). 2024(04): 71-89 . 百度学术
    2. 幸林泉,肖应民,杨志斌,韦正旻,周勇,高赛军. 基于安全强化学习的航天器交会制导方法. 计算机科学. 2023(08): 271-279 . 百度学术
    3. 张禹琛,成国瑞,宋申民. 无速度测量下的航天器安全接近位姿一体化控制. 宇航学报. 2022(10): 1345-1360 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  1698
  • HTML全文浏览量:  399
  • PDF下载量:  149
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-04-13
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回