EI、Scopus 收录
中文核心期刊

强吸气旋转圆筒壁面湍流边界层建模及计算

Ievgen Mochalin, 林静雯, 蔡建程, VolodymyrBrazhenko, 鄂世举

Ievgen Mochalin, 林静雯, 蔡建程, VolodymyrBrazhenko, 鄂世举. 强吸气旋转圆筒壁面湍流边界层建模及计算[J]. 力学学报, 2020, 52(5): 1323-1333. DOI: 10.6052/0459-1879-20-032
引用本文: Ievgen Mochalin, 林静雯, 蔡建程, VolodymyrBrazhenko, 鄂世举. 强吸气旋转圆筒壁面湍流边界层建模及计算[J]. 力学学报, 2020, 52(5): 1323-1333. DOI: 10.6052/0459-1879-20-032
Ievgen Mochalin, Lin Jingwen, Cai Jiancheng, Volodymyr Brazhenko, E Shiju. MODELLING AND CALCULATION OF THE TURBULENT BOUNDARY LAYER ON A ROTATING CYLINDER SURFACE WITH STRONG SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1323-1333. DOI: 10.6052/0459-1879-20-032
Citation: Ievgen Mochalin, Lin Jingwen, Cai Jiancheng, Volodymyr Brazhenko, E Shiju. MODELLING AND CALCULATION OF THE TURBULENT BOUNDARY LAYER ON A ROTATING CYLINDER SURFACE WITH STRONG SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1323-1333. DOI: 10.6052/0459-1879-20-032
Ievgen Mochalin, 林静雯, 蔡建程, VolodymyrBrazhenko, 鄂世举. 强吸气旋转圆筒壁面湍流边界层建模及计算[J]. 力学学报, 2020, 52(5): 1323-1333. CSTR: 32045.14.0459-1879-20-032
引用本文: Ievgen Mochalin, 林静雯, 蔡建程, VolodymyrBrazhenko, 鄂世举. 强吸气旋转圆筒壁面湍流边界层建模及计算[J]. 力学学报, 2020, 52(5): 1323-1333. CSTR: 32045.14.0459-1879-20-032
Ievgen Mochalin, Lin Jingwen, Cai Jiancheng, Volodymyr Brazhenko, E Shiju. MODELLING AND CALCULATION OF THE TURBULENT BOUNDARY LAYER ON A ROTATING CYLINDER SURFACE WITH STRONG SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1323-1333. CSTR: 32045.14.0459-1879-20-032
Citation: Ievgen Mochalin, Lin Jingwen, Cai Jiancheng, Volodymyr Brazhenko, E Shiju. MODELLING AND CALCULATION OF THE TURBULENT BOUNDARY LAYER ON A ROTATING CYLINDER SURFACE WITH STRONG SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1323-1333. CSTR: 32045.14.0459-1879-20-032

强吸气旋转圆筒壁面湍流边界层建模及计算

基金项目: 1)国家自然科学基金(51976201);浙江省自然科学基金(LY18E060006);国家级大学生创新创业训练(201910345049)
详细信息
    通讯作者:

    蔡建程

  • 中图分类号: O368,TB126

MODELLING AND CALCULATION OF THE TURBULENT BOUNDARY LAYER ON A ROTATING CYLINDER SURFACE WITH STRONG SUCTION

  • 摘要: 提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.
    Abstract: A simple, fast and adequate approach to the turbulent boundary layer calculation on the surface of a rotating permeable cylinder has been elaborated for the case of a strong suction through the cylinder surface. Firstly, the rotational gap flow between two concentric cylinders was analyzed theoretically; the outer cylinder is stationary, and the inner porous cylinder is rotating with suction condition. Based on the fact that the stationary outer cylinder does not influence the flow near the rotating inner one, it can be treated as a boundary layer on the surface of rotating permeable cylinder, and an analytical expression for the circumferential velocity distribution is obtained. Secondly, the Cebeci-Smith two-layer algebraic turbulence model has been adjusted to account for centrifugal force field (streamlines curvature), wall suction, and low-Reynolds-number effects. Analytical corrections and empirical coefficients are used to tune the model for the specific conditions of coupled influence of the factors mentioned above. The calibration database was used which has been obtained by detailed numerical simulation based on the Reynolds stress turbulent model. The numerical simulation approach has been comprehensively verified in the known study for the specific flow conditions under consideration. Finally, the solution algorithm based on generalized Cebeci-Smith two-layer algebraic turbulence model was offered to solve the boundary layer flow over the rotating porous cylinder surface. The algorithm is suited for the situation of flow uniformity in the azimuthal and axial directions that required a special iterative procedure to be elaborated. The results of the algebraic turbulence model with different combinations of the rotational speed and the suction velocity agree well with the simulation results of the Reynolds stress turbulent model. It is demonstrated that the method developed reproduces also the laminar boundary layer at the same initial conditions when the detailed numerical simulation predicts the stable laminar flow in the inner cylinder boundary layer.
  • [1] Wilkinson N, Dutcher CS. Taylor-Couette flow with radial fluid injection. The Review of Scientific Instruments, 2017,88(8):1-9
    [2] Min K, Lueptow RM. Hydrodynamic stability of viscous flow between rotating porous cylinders with radial flow. Physics of Fluids, 1994,6(1):144-151
    [3] Wereley ST, Akonur A, Lueptow RM. Particle--fluid velocities and fouling in rotating filtration of a suspension. Journal of Membrane Science, 2002,209(2):469-484
    [4] Ji P, Motin A, Shan W, et al. Dynamic crossflow filtration with a rotating tubular membrane: Using centripetal force to decrease fouling by buoyant particles. Chemical Engineering Research and Design, 2016,106(6):101-114
    [5] Jaffrin1 MY, Ding L. A review of rotating and vibrating membranes systems: advantages and drawbacks. Journal of Membrane and Separation Technology, 2015,4(3):134-148
    [6] Motin A, Tarabara VV, Bénard A. Numerical investigation of the performance and hydrodynamics of a rotating tubular membrane used for liquid--liquid separation. Journal of Membrane Science, 2015,473(3):245-255
    [7] Zheng J, Cai J, Wang D, et al. Suspended particle motion close to the surface of rotating cylindrical filtering membrane. Physics of Fluids, 2019,31(5):1-10
    [8] 刘难生, 董宇红, 陆夕云 等. 旋转同心圆筒间Couette-Taylor流动的数值模拟. 中国科学技术大学学报, 2002,32(1):91-97
    [8] ( Liu Nansheng, Dong Yuhong, Lu Xiyun, et al. Numerical simulation of the Couette-Taylor flow between two concentric rotating cylinders. Journal of University of Science and Technology of China, 2002,32(1):91-97 (in Chinese))
    [9] 冯俊杰, 毛玉红, 叶强 等. Taylor-Couette流场特性的PIV测量及数值模拟. 实验流体力学, 2016,30(2):67-74
    [9] ( Feng Junjie, Mao Yuhong, Ye Qiang, et al. PIV measurement and numerical simulation of Taylor-Couette flow. Journal of Experiments in Fluid Mechanics, 2016,30(2):67-74 (in Chinese))
    [10] 蔡利亚. 同轴圆柱间旋转流动Taylor-Couette流的数值模拟. 辽宁工业大学学报(自然科学版), 2007,27(3):206-210
    [10] ( Cai Liya. Numerical simulation of Taylor-Couette flow between two coaxial rotating cylinders. Journal of Liaoning Institute of Technology, 2007,27(3):206-210 (in Chinese))
    [11] Fénot M, Bertin Y, Dorignac E, et al. A review of heat transfer between concentric rotating cylinders with or without axial flow. International Journal of Thermal Sciences, 2011,50(7):1138-1155
    [12] Mochalin I, E SJ, Wang D, et al. Numerical study of heat transfer in a Taylor-Couette system with forced radial throughflow. International Journal of Thermal Sciences, 2020,147(3):1-10
    [13] Andereck CD, Liu SS, Swinney HL. Flow regimes in a circular Couette system with independently rotating cylinders. Journal of Fluid Mechanics, 1986,164(3):155-183
    [14] Johnson EC, Lueptow RM. Hydrodynamic stability of flow between rotating porous cylinders with radial and axial flow. Physics of Fluids, 1997,9(12):3687-3696
    [15] Serre E, Sprague MA, Lueptow RM. Stability of Taylor--Couette flow in a finite-length cavity with radial throughflow. Physics of Fluids, 2008,20(3):65-69
    [16] Mochalin IV, Khalatov AA. Centrifugal instability and turbulence development in Taylor--Couette flow with forced radial throughflow of high intensity. Physics of Fluids, 2015,27(9):1-9
    [17] 梁田, 刘波, 茅晓晨. 附面层抽吸对叶栅角区分离流动的控制研究. 推进技术, 2019,40(9):1972-1981
    [17] ( Liang Tian, Liu Bo, Mao Xiaochen. Investigation of corner separation control for cascade with boundary layer suction. Journal of Propulsion Technology, 2019,40(9):1972-1981 (in Chinese))
    [18] Kametani Y, Fukagata K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, 2011,681(8):154-172
    [19] 郑连存, 邓学蓥, 范玉妹. 特定抽吸/喷注下幂律流体平板边界层问题. 力学学报, 2001,33(5):675-678
    [19] ( Zheng Liancun, Deng Xueying, Fan Yumei. Flat plate boundary layer problems with special suction/injection conditions in power law fluid. Acta Mechanica Sinica, 2001,33(5):675-678 (in Chinese))
    [20] 王艳平, 郭昊, 刘沛清 等. 高频吹气扰动影响近壁区拟序结构统计特性的实验研究. 力学学报, 2015,47(4):571-579
    [20] ( Wang Yanpin, Guo Hao, Liu Peiqing, et al. Effects of high frequency blowing perturbation on a turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(4):571-579 (in Chinese))
    [21] 王帅杰, 崔晓通, 白建侠 等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报, 2019,51(3):767-774
    [21] ( Wang Shuaijie, Cui Xiaotong, Bai Jianxia, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):767-774 (in Chinese))
    [22] Fransson JHM, Konieczny P, Alfredsson PH. Flow around a porous cylinder subject to continuous suction or blowing. Journal of Fluids and Structures, 2004,19(8):1031-1048
    [23] Kim K, Sung HJ, Chung MK. Assessment of local blowing and suction in a turbulent boundary layer. AIAA Journal, 2001,40(1):175-177
    [24] Schlichting H, Gersten K. Boundary-Layer Theory. Berlin Heidelberg: Springer-Verlag, 2017
    [25] Trip R, Fransson JHM. Boundary layer modification by means of wall suction and the effect on the wake behind a rectangular forebody. Physics of Fluids, 2014,26(12):1-18
    [26] Cebeci T. Analysis of Turbulent Flows with Computer Programs. Oxford, UK: Butterworth-Heinemann, 2013
    [27] Bradshaw P. The analogy between streamline curvature and buoyancy in turbulent shear flow. Journal of Fluid Mechanics, 1969,36(1):177-191
    [28] Chen H, Zhang B. Fluid flow and mixed convection heat transfer in a rotating curved pipe. International Journal of Thermal Sciences, 2003,42(11):1047-1059
    [29] Weigand B, Beer H. On the universality of the velocity profiles of a turbulent flow in an axially rotating pipe. Applied Scientific Research, 1994,52(2):115-132
    [30] Kikuyama K, Murakami M, Nishibori K, et al. Flow in an axially rotating pipe: A calculation of flow in the saturated region. JSME International Journal, 1983,26(214):506-513
  • 期刊类型引用(1)

    1. 张瑞洁,陈榴,胡磊,戴韧. 集电环笛型通风冷却结构的温度分析及优化. 热能动力工程. 2021(12): 38-44 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1477
  • HTML全文浏览量:  320
  • PDF下载量:  113
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-02-08
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回