EI、Scopus 收录
中文核心期刊

一类忆阻神经元的电活动多模振荡及Hamilton 能量反馈控制

MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON

  • 摘要: 根据法拉第电磁感应定律,在离子穿越细胞膜或者在外界电磁辐射下,细胞内外的电生理环境会产生电磁感应效应,继而会影响神经元的电活动行为. 基于此,本文考虑电磁感应影响下的 Hindmarsh-Rose (HR) 神经元模型,研究了其混合模式振荡放电特征,并设计一个 Hamilton 能量反馈控制器,将其控制到不同的周期簇放电状态. 首先,通过理论分析发现磁通 HR 神经元系统的 Hopf 分岔使其平衡点的稳定性发生了改变,并产生极限环,进而研究了 Hopf 分岔点附近膜电压的放电特征. 基于双参数数值仿真发现该系统具有丰富的分岔结构,在不同的参数平面上存在倍周期分岔、伴有混沌的加周期分岔、无混沌的加周期分岔以及共存的混合模式振荡. 最后,为了有效控制膜电压的混合模式振荡,利用亥姆霍兹理论计算出磁通 HR 神经元系统的 Hamilton 能量函数并设计 Hamilton 能量反馈控制器,通过数值仿真分析了膜电压在不同反馈增益下的簇放电状态,发现该控制器能够有效地控制膜电压到不同的周期簇放电模式. 本文的研究结果为探究电磁感应下神经元的分岔结构及其能量控制领域提供了有用的理论支撑.

     

    Abstract: According to Faraday's electromagnetic induction law, the electrophysiological environment in and out the cell will produce electromagnetic induction effects in the case of ions penetrating the cell membrane or in the case of being exposed to external electromagnetic radiation, which will affect the electrical activity behavior of neural systems. Based on this principle, this paper studies the mixed-mode oscillation discharge characteristics of the Hindmarsh-Rose(HR) neuron model (here we call it as magnetic flux HR neuron model) with the influence of electromagnetic induction, and designs a Hamilton energy feedback controller to manage the mode to different periodic cluster discharge states. First, through theoretic analysis, it is found that the stability of equilibrium point in the magnetic flux HR neuron model is changed by the occurrence of Hopf bifurcation in the magnetic flux HR neuron model and a limit cycle is generated. Besides, some discharge characteristics of the membrane voltage near the Hopf bifurcation point are also discussed in detail. Then, it is also displayed there are abundant bifurcation structures in the magnetic flux HR neuron model based on the two-parameter numerical simulations, which includes multi-period bifurcation, period-adding bifurcation with chaos, period-adding bifurcation without chaos and co-existing mixed-mode oscillations in different initial conditions. At last, with the purpose of controlling the mixed-mode oscillation of membrane voltage, the Hamilton energy function is calculated by utilizing the Helmholtz theorem, and a Hamilton energy feedback controller is designed further. Additionally, it can be seen that the controller can effectively control the membrane voltage in different periodic clustering discharge modes, with the analysis of the discharge states of membrane voltage under different feedback gains in view of the numerical simulation. The results of this paper provide a useful theoretical support for the study of bifurcation structure in artificial neuron system under electromagnetic induction and the field of energy control related to the neurons.

     

/

返回文章
返回