EI、Scopus 收录
中文核心期刊

重复使用火箭着陆结构稳定性分析

袁晗, 王小军, 张宏剑, 石玉红, 张希, 章凌

袁晗, 王小军, 张宏剑, 石玉红, 张希, 章凌. 重复使用火箭着陆结构稳定性分析[J]. 力学学报, 2020, 52(4): 1007-1023. DOI: 10.6052/0459-1879-20-069
引用本文: 袁晗, 王小军, 张宏剑, 石玉红, 张希, 章凌. 重复使用火箭着陆结构稳定性分析[J]. 力学学报, 2020, 52(4): 1007-1023. DOI: 10.6052/0459-1879-20-069
Yuan Han, Wang Xiaojun, Zhang Hongjian, Shi Yuhong, Zhang Xi, Zhang Ling. STABILITY ANALYSIS OF REUSABLE LAUNCH VEHICLE LANDING STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1007-1023. DOI: 10.6052/0459-1879-20-069
Citation: Yuan Han, Wang Xiaojun, Zhang Hongjian, Shi Yuhong, Zhang Xi, Zhang Ling. STABILITY ANALYSIS OF REUSABLE LAUNCH VEHICLE LANDING STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1007-1023. DOI: 10.6052/0459-1879-20-069
袁晗, 王小军, 张宏剑, 石玉红, 张希, 章凌. 重复使用火箭着陆结构稳定性分析[J]. 力学学报, 2020, 52(4): 1007-1023. CSTR: 32045.14.0459-1879-20-069
引用本文: 袁晗, 王小军, 张宏剑, 石玉红, 张希, 章凌. 重复使用火箭着陆结构稳定性分析[J]. 力学学报, 2020, 52(4): 1007-1023. CSTR: 32045.14.0459-1879-20-069
Yuan Han, Wang Xiaojun, Zhang Hongjian, Shi Yuhong, Zhang Xi, Zhang Ling. STABILITY ANALYSIS OF REUSABLE LAUNCH VEHICLE LANDING STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1007-1023. CSTR: 32045.14.0459-1879-20-069
Citation: Yuan Han, Wang Xiaojun, Zhang Hongjian, Shi Yuhong, Zhang Xi, Zhang Ling. STABILITY ANALYSIS OF REUSABLE LAUNCH VEHICLE LANDING STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1007-1023. CSTR: 32045.14.0459-1879-20-069

重复使用火箭着陆结构稳定性分析

基金项目: 1)中国科协学科发展项目(2019XKFZ02);中国科协青年人才托举工程(2016QNRC001-YESS20160107);中国科协优秀中外青年交流计划(2019293);国家自然科学基金(11402033)
详细信息
    通讯作者:

    王小军,张宏剑

    王小军,张宏剑

  • 中图分类号: O313.7

STABILITY ANALYSIS OF REUSABLE LAUNCH VEHICLE LANDING STRUCTURE

  • 摘要: 近年来,包括中国在内的诸多国家相继开展垂直起降重复使用火箭的研究,运载火箭在平台上垂直着陆时的着陆稳定性为实现运载火箭重复使用的关键问题. 由于在运载火箭设计初期结构设计尚未完成,不具有供着陆稳定性分析的详细的动力学模型,难以开展着陆过程动力学仿真,故对运载火箭着陆稳定性评估方法的研究尤为必要. 本文基于广义碰撞定律,对二维运动模式下运载火箭与着陆平台的多点碰撞过程进行了分析,切向采用库伦摩擦模型给出了切向运动学恢复系数的表达式. 本文首先通过机械能约束和接触碰撞中的单边约束给出了一般运动形式下广义运动学恢复系数的值域,再对两种典型运动模式,给出了该两种典型运动模式下广义运动学恢复系数的值域. 然后考虑着陆腿中缓冲器的作用,将运载火箭与平台的碰撞近似为完全非弹性碰撞,得到了其广义运动学恢复系数,并结合运动学分析和能量法提出了一种基于碰撞后速度的着陆稳定性的判别方法. 最后以某型运载火箭着陆样机的参数为例,分析了碰撞前速度、着陆腿跨距、摩擦系数对着陆稳定性的影响,结果表明,本文提出的稳定性判别方法较能量法更为精确,可以考虑触地速度、角速度、摩擦系数等参数间的耦合关系.
    Abstract: Many countries carried out the research on vertical take-off and vertical landing reusable launch vehicle (RLV) in recent years. The touchdown stability of the RLV when landing vertically on the platform is a key issue for the RLV reuse. Since the structural scheme of the RLV has not been completed in the initial stage of design, and there are no detailed dynamic models for touchdown stability analysis, it is difficult to carry out the dynamic simulation of landing process, therefore the research on estimation method of landing stability is needed. Based on the generalized impact law, this paper analyzes the multiple impacts between the RLV and the landing platform in a two-dimensional landing mode, and the tangential restitution coefficients is given by Coulomb friction model at the impulse level. Firstly, the admissible domain of restitution coefficients in the general motion mode is given through the energetic constraint and unilateral constraints, and the admissible domain of restitution coefficients in two typical motion modes is given as well. Secondly, considering the role of buffer in the landing leg, the collision between the RLV and the platform is approximated as a completely inelastic collision, and accordingly the kinematic restitution coefficients is obtained. Therefore, combined with the kinematic analysis and energy method, a touchdown stability criterion is proposed, which discriminates whether an RLV will fall or not after impacts the platform. In the end, taking an RLV landing prototype as an example, the effects of some key parameters on touchdown stability are analyzed, including the touchdown velocity, the span of supporting leg and the friction coefficient between supporting leg and platform. The results show that the touchdown stability criterion proposed in this paper, is more accurate than the energy method, and the coupling relationship between touchdown velocity, angular velocity and friction coefficient can be considered.
  • [1] 余梦伦. 两级入轨重复使用运载器的方案探讨. 装备指挥技术学院学报, 2006,17(1):1-5
    [1] ( Yu Menglun. A study of the two-stage-to-orbit re-usable launch vehicle scheme. Journal of the Academy of Equipment Command & Technology, 2006,17(1):1-5 (in Chinese))
    [2] 杨勇, 王小军, 唐一华 等. 重复使用运载器发展趋势及特点. 导弹与航天运载技术, 2002, (5):15-19
    [2] ( Yang Yong, Wang Xiaojun, Tang Yihua, et al. Development trends and characteristics of reusable launch vehicles. Missiles and Space Vehicles, 2002, (5):15-19 (in Chinese))
    [3] 徐大富, 张哲, 吴克 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展. 科学通报, 2016,61(32):3453-3463
    [3] ( Xu Dafu, Zhang Zhe, Wu Ke, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launch vehicle. Chin Sci Bull, 2016,61(32):3453-3463 (in Chinese))
    [4] Ralph E. SpaceX's successful debut of Falcon 9 Block 5 heralds the future of reusable rocketry. https://www.teslarati.com/spacex-successful-block-5-bangabandhu-launch-landing/. 2018-05-11
    [5] Peter B. SpaceX's reusable Falcon 9: What are the real cost savings for customers. https://spacenews.com/spacexs-reusable-falcon-9-what-are-the-real-cost-savings-for-customers/. 2016-4-25
    [6] 王辰, 王小军, 张宏剑 等. 可重复使用运载火箭发展研究. 飞航导弹, 2018, (9):18-26
    [6] ( Wang Chen, Wang Xiaojun, Zhang Hongjian, et al. Research on development of reusable rocket. Aerodynamic Missile Journal, 2018, (9):18-26 (in Chinese))
    [7] Blase WP. The first reusable SSTO spacecraft. Spaceflight, 1994,35(3):90-94
    [8] 崔乃刚, 吴荣, 韦常柱 等. 垂直起降可重复使用运载器发展现状与关键技术分析. 宇航总体技术, 2018,2(2):27-42
    [8] ( Cui Naigang, Wu Rong, Wei Changzhu, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle. Astronautical Systems Engineering Technology, 2018,2(2):27-42 (in Chinese))
    [9] 夏元明, 张威, 崔天宁 等. 金属多级类蜂窝的压溃行为研究. 力学学报, 2019,51(3):873-883
    [9] ( Xia Yuanming, Zhang Wei, Cui Tianning, et al. Investigation on crushing behavior of metal honeycomb-like hierarchical structure. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):873-883 (in Chinese))
    [10] 岳帅, 聂宏, 张明 等. 一种用于垂直降落重复使用运载器的缓冲器性能分析. 宇航学报, 2016,37(6):646-656
    [10] ( Yue Shuai, Nie Hong, Zhang Ming, et al. Analysis on performance of a damper used for vertical landing reusable launch vehicle. Journal of Astronautics, 2016,37(6):646-656 (in Chinese))
    [11] 陶海峰. 垂直起降重复使用运载器软着陆系统研究. [硕士论文]. 南京: 南京航空航天大学, 2017
    [11] ( Tao Haifeng. Research on system of a damper used for vertical landing reusable launch vehicle. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese))
    [12] 杨文淼, 刘志, 时军委. 可重复使用垂直起降运载火箭软着陆动力学仿真研究. 科学技术与工程, 2017,17(21):329-334
    [12] ( Yang Wenmiao, Liu Zhi, Shi Junwei. Dynamic simulation of VTOL reusable launch vehicle soft-landing. Science Technology and Engineering, 2017,17(21):329-334 (in Chinese))
    [13] 毕春莹. 可回收火箭平行四边形式着陆机构设计及稳定性分析. [硕士论文]. 哈尔滨:哈尔滨工业大学, 2016
    [13] ( Bi Chunying. Design and stability analysis of landing mechanism with parallelogram structure for recyclable rocket. [Master Thesis]. Harbin: Harbin Institute of Technology, 2016 (in Chinese))
    [14] Herr RW, Leonard HW. Dynamic model investigation of touchdown stability of lunar landing vehicles. NASA TN D-4215, 1967
    [15] Zupp GA, Doiron HH. A mathematical procedure for predicting the touchdown dynamics of a soft-landing vehicle. NASA TN-D-7045, 1971
    [16] Black RJ. Quadrupedal landing gear systems for spacecraft. Journal of Spacecraft and Rockets, 1964,1(2):196-203
    [17] Doiron HH, Zupp GA. Apollo lunar module landing dynamics. 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, USA, 2000-4-3-6, 1-11
    [18] 杨建中, 曾福明, 满剑锋 等. 嫦娥三号着陆器着陆缓冲系统设计与验证. 中国科学: 技术科学, 2014,44(5):440-449
    [18] ( Yang Jianzhong, Zeng Fuming, Man Jianfeng, et al. Design and verification of the landing impact attenuation system for Chang' E-3 lander. Sci Sin Tech, 2014,44(5):440-449 (in Chinese))
    [19] 朱汪, 杨建中. 月球着陆器软着陆机构着陆稳定性仿真分析. 宇航学报, 2009,30(5):1792-1796
    [19] ( Zhu Wang, Yang Jianzhong. Touchdown stability simulation of landing gear system for lunar lander. Journal of Astronautics, 2009,30(5):1792-1796 (in Chinese))
    [20] 朱汪, 杨建中. 月球探测器软着陆机构着陆腿模型与仿真分析. 宇航学报, 2008,29(6):1723-1728
    [20] ( Zhu Wang, Yang Jianzhong. Modeling and simulation of landing leg for the lunar landing gear system. Journal of Astronautics, 2008,29(6):1723-1728 (in Chinese))
    [21] Lin Q, Nie H, Chen J, et al. Research on stability of lunar lander soft landing based on flexible models. 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 2010-10-22-24.
    [22] Wei X, Lin Q, Nie H, et al. Investigation on soft-landing dynamics of four-legged lunar lander. Acta Astronautica, 2014,101(1):55-66
    [23] 王闯, 刘荣强, 邓宗全 等. 月球着陆器着陆过程动力学分析. 北京航空航天大学学报, 2008,34(4):381-385
    [23] ( Wang Chuang, Liu Rongqiang, Deng Zongquan, et al. Dynamics analysis of lunar lander's landing process. Journal of Beijing University of Aeronautics and Astronautics, 2008,34(4):381-385 (in Chinese))
    [24] 罗昌杰, 邓宗全, 刘荣强 等. 基于零力矩点理论的腿式着陆器着陆稳定性研究. 机械工程学报, 2010,46(9):38-45
    [24] ( Luo Changjie, Deng Zongquan, Liu Rongqiang, et al. Landing stability investigation of legged-type spacecraft lander based on zero moment point theory. Journal of Mechanical Engineering, 2010,46(9):38-45 (in Chinese))
    [25] Li K, Liu R, Deng Z, et al. Research on the lander stability during lunar rover unloading base on the theory of ZMP. Advanced Materials Research, 2012, 457-458:1264-1270
    [26] 龙铝波, 卿启湘, 文桂林 等. 基于的着陆器软着陆稳定性仿真分析. 工程设计学报, 2010,17(5):334-338
    [26] ( Long Lubo, Qing Qixiang, Wen Guilin, et al. Simulation analysis of lander soft landing's stability based on ADAMS. Journal of Engineering Design, 2010,17(5):334-338 (in Chinese))
    [27] Brogliato B, Zhang H, Liu C. Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody System Dynamics, 2012,27(3):351-382
    [28] Housner GW. The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 1963,53(2):403-417
    [29] Shenton HW, Jones NP. Base excitation of rigid bodies. I: Formulation. Journal of Engineering Mechanics, 1991,117(10):2286-2306
    [30] Shenton HW, Jones NP. Base excitation of rigid bodies. II: Periodic slide-rock response. Journal of Engineering Mechanics, 1991,117(10):2307-2328
    [31] Lipscombe PR, Pellegrino S. Free rocking of prismatic blocks. Journal of Engineering Mechanics, 1993,119(7):1387-1410
    [32] Zhuang F, Wang Q. Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints. Multibody System Dynamics, 2013,29(4):403-423
    [33] Zhuang F, Wang Q. Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints. Acta Mechanica Sinica, 2014,30(3):437-446
    [34] 王晓军, 吕敬, 王琪. 含摩擦滑移铰平面多刚体系统动力学的数值算法. 力学学报, 2019,51(1):209-217
    [34] ( Wang Xiaojun, Lü Jing, Wang Qi. A numerical method for dynamics of planar multi-rigid-body system with frictional translational joints based on LuGre friction model. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):209-217 (in Chinese))
    [35] 张润森, 王琪. 浮放物体平面多刚体动力学建模与算法研究. 力学学报, 2017,49(6):1370-1379
    [35] ( Zhang Runsen, Wang Qi. Research on modeling and numerical method of free standing body on planar rigid multibody dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1370-1379 (in Chinese))
    [36] Zhang H, Brogliato B, Liu C. Study of the Planar Rocking-Block Dynamics With Coulomb Friction: Critical Kinetic Angles. Journal of Computational and Nonlinear Dynamics, 2012,8:021002
    [37] 张宏剑, 庄方方, 王辰 等. 线碰撞离散化研究. 动力学与控制学报, 2017,15(4):330-334
    [37] ( Zhang Hongjian, Zhuang Fangfang, Wang Chen, et al. Research on discretization of line impact in rocking block. Journal of Dynamics and Control, 2017,15(4):330-334 (in Chinese))
    [38] Liu C, Zhao Z, Brogliato B. Frictionless multiple impacts in multibody systems, I, Theoretical framework. Proc R Soc A, 2008,464:3193-3211
    [39] Liu C, Zhao Z, Brogliato B. Frictionless multiple impacts in multibody systems. II, Numerical algorithm and simulation results. Proc R Soc A, 2009,465:2267-2292
    [40] 刘丽兰, 刘宏昭, 吴子英 等. 机械系统中摩擦模型的研究进展. 力学进展, 2008,38(2):201-213
    [40] ( Liu Lilan, Liu Hongzhao, Wu Ziying, et al. An overview of friction models in mechanical systems. Advances in Mechanics, 2008,38(2):201-213 (in Chinese))
    [41] 王东, 徐超, 胡杰 等. 连接结构接触界面非线性力学建模研究. 力学学报, 2018,50(1):44-57
    [41] ( Wang Dong, Xu Chao, Hu Jie, et al. Nonlinear mechanics modeling for joint interface of assembled structure. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):44-57 (in Chinese))
    [42] 赵振, 刘才山, 陈滨. Painlevé疑难的理论分析和实验验证. 力学学报, 2013,45(1):37-44
    [42] ( Zhao Zhen, Liu Caishan, Chen Bin. Theoretical analysis and experimental verification for Painlevé paradox. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(1):37-44 (in Chinese))
  • 期刊类型引用(18)

    1. 郭嘉,于兵,马红鹏,王辰,谢珏帆. 超重-星舰运输系统机构技术分析. 导弹与航天运载技术(中英文). 2024(03): 29-37 . 百度学术
    2. 安军,闵昌万,杨锐. 爆炸螺栓附加弯矩形成机理与结构优化设计. 宇航学报. 2024(10): 1524-1537 . 百度学术
    3. 王国辉,张宏剑,吴会强. 运载火箭非火工分离机构技术发展与展望. 宇航学报. 2023(03): 334-347 . 百度学术
    4. 马佳,揭豪,白梦昊,彭静,陈辉,陈得良. 基于无量纲分析的法向恢复系数模型研究. 力学学报. 2023(04): 982-990 . 本站查看
    5. 梁伟华,朱赫,尹乔之,周乐,魏小辉,聂宏. 基于自适应起落架的旋翼飞行器着陆稳定性分析. 航空计算技术. 2023(04): 38-41 . 百度学术
    6. 吴会强,张宏剑,张毅博. 航天运载器机构技术发展及展望. 中国航天. 2023(10): 9-17 . 百度学术
    7. 王佳南,丁沛,黄强. 可重复使用火箭着陆回收机构的试验验证技术. 中国航天. 2023(10): 25-33 . 百度学术
    8. 包为民. 可重复使用运载火箭技术发展综述. 航空学报. 2023(23): 8-33+3 . 百度学术
    9. 张宏剑,于兵,吴会强,张志峰,王辰. 运载火箭机构技术发展研究. 导弹与航天运载技术(中英文). 2023(06): 1-9 . 百度学术
    10. 李佳霖,赵剑,孙直,郭杏林,郭旭. 基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计. 力学学报. 2022(01): 244-251 . 本站查看
    11. 范刚,张宏宇,王捷冰,薛铮,刘晓华. 典型连接结构螺栓的附加弯矩形成机理与承载能力研究及结构优化设计. 力学学报. 2022(05): 1303-1321 . 本站查看
    12. 宋征宇,黄兵,汪小卫,张宏剑. 重复使用运载器回收技术现状与挑战. 深空探测学报(中英文). 2022(05): 457-469+455-456 . 百度学术
    13. 李元恒,张宏剑,宋征宇,章凌,王辰,马红鹏. 运载火箭垂直返回着陆机构构型优化与设计. 深空探测学报(中英文). 2022(05): 470-476 . 百度学术
    14. 宋征宇,黄兵,汪小卫,张宏剑,王聪,庄方方. 重复使用航天运载器的发展及其关键技术. 前瞻科技. 2022(01): 62-74 . 百度学术
    15. 胡鹏翔,王檑,徐珊姝,张宏剑,张津泽. 垂直回收火箭可伸缩着陆腿展开的动力学仿真分析. 宇航总体技术. 2022(06): 15-22 . 百度学术
    16. Shuai YUE,Qing LIN,Guang ZHENG,Zhonghua DU. Modeling and experimental validation of vertical landing reusable launch vehicle under symmetric landing conditions. Chinese Journal of Aeronautics. 2022(12): 156-172 . 必应学术
    17. 袁晗,王小军,张宏剑,牟宇,王檑,王辰. 重复使用火箭着陆缓冲的机构冲击动力学分析及实验验证. 北京大学学报(自然科学版). 2022(06): 977-988 . 百度学术
    18. 范纪华,谷通顺,王明强,谌宏,陈立威. 基于LuGre摩擦模型的接触约束法旋转柔性梁斜碰撞研究. 力学学报. 2021(04): 1156-1169 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  1969
  • HTML全文浏览量:  364
  • PDF下载量:  225
  • 被引次数: 22
出版历程
  • 收稿日期:  2020-03-04
  • 刊出日期:  2020-08-09

目录

    /

    返回文章
    返回