EI、Scopus 收录
中文核心期刊

三种典型轴向运动结构的振动特性对比

刘星光, 唐有绮, 周远

刘星光, 唐有绮, 周远. 三种典型轴向运动结构的振动特性对比[J]. 力学学报, 2020, 52(2): 522-532. DOI: 10.6052/0459-1879-19-304
引用本文: 刘星光, 唐有绮, 周远. 三种典型轴向运动结构的振动特性对比[J]. 力学学报, 2020, 52(2): 522-532. DOI: 10.6052/0459-1879-19-304
Liu Xingguang, Tang Youqi, Zhou Yuan. COMPARISON OF VIBRATION CHARACTERISTICS OF THREE TYPICAL AXIALLY MOVING STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 522-532. DOI: 10.6052/0459-1879-19-304
Citation: Liu Xingguang, Tang Youqi, Zhou Yuan. COMPARISON OF VIBRATION CHARACTERISTICS OF THREE TYPICAL AXIALLY MOVING STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 522-532. DOI: 10.6052/0459-1879-19-304
刘星光, 唐有绮, 周远. 三种典型轴向运动结构的振动特性对比[J]. 力学学报, 2020, 52(2): 522-532. CSTR: 32045.14.0459-1879-19-304
引用本文: 刘星光, 唐有绮, 周远. 三种典型轴向运动结构的振动特性对比[J]. 力学学报, 2020, 52(2): 522-532. CSTR: 32045.14.0459-1879-19-304
Liu Xingguang, Tang Youqi, Zhou Yuan. COMPARISON OF VIBRATION CHARACTERISTICS OF THREE TYPICAL AXIALLY MOVING STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 522-532. CSTR: 32045.14.0459-1879-19-304
Citation: Liu Xingguang, Tang Youqi, Zhou Yuan. COMPARISON OF VIBRATION CHARACTERISTICS OF THREE TYPICAL AXIALLY MOVING STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 522-532. CSTR: 32045.14.0459-1879-19-304

三种典型轴向运动结构的振动特性对比

基金项目: 1)国家自然科学基金资助项目(11672186)
详细信息
    通讯作者:

    刘星光

    刘星光,唐有绮

  • 中图分类号: O323

COMPARISON OF VIBRATION CHARACTERISTICS OF THREE TYPICAL AXIALLY MOVING STRUCTURES

  • 摘要: 轴向运动结构的横向振动一直是动力学领域的研究热点之一.目前大多数的文献只涉及对一种模型的研究,而针对几种模型的对比分析较少.本文对3种典型轴向运动结构(Euler梁、窄板和对边简支对边自由的板)的振动特性进行了对比分析.针对工程中不同的结构参数,本文为其理论研究中选择更加合理的模型提供了参考.通过复模态方法求解了3种模型的控制方程,给出了其相应的固有频率及模态函数.对于板模型,同时考虑了其自由边界的两种刚体位移以及弯扭耦合振动3种情况.通过数值算例给出了3种模型的前四阶固有频率随轴速和长宽比的变化情况,并应用微分求积法对复模态方法得到的解析解进行验证.特别采用三维图的形式分析了不同的轴速、阻尼、刚度和长宽比等参数混合时对3种模型第一阶固有频率的影响,着重研究了窄板和梁的不同的长宽比和轴速混合时对两者的第一阶固有频率的相对误差的影响.结果表明:随着轴速的增大,3种模型的固有频率逐渐减小. 窄板是板的一种简化模型.在各参数值发生变化时,阻尼对第一阶固有频率的影响最小.长宽比很大,轴速很小或为零时,复杂模型可以简化为简单模型.
    Abstract: The transverse vibration of the axially moving structure is always one of the hot topics in the field of dynamics. At present, most literatures are considering the study of one model. There are few researches considering the comparative analysis of several models. The vibration characteristics of three typical axially moving structures, such as the Euler beam, the panel, and the plate with two opposite sides simply supported and other two free, are compared and analyzed in this paper. In view of different structural parameters in engineering, this paper provides a reference for choosing a more reasonable model in the study of vibration theory. The governing equations of the three models are solved by the complex mode method. The corresponding natural frequencies and mode functions can be obtained. For the plate model, two rigid displacements and the coupled flexural and torsional vibration are both considered. The variations of the first four order natural frequencies of the three models with the axial velocity and the aspect ratio are given by numerical examples. At the same time, the analytical solution obtained by the complex modal method is verified by the differential quadrature method. The influence of different axial speed, damping, stiffness, and aspect ratio on the first order natural frequency of three models is analyzed by adopting the form of three-dimensional diagram for the first time. The effects of different aspect ratios and axial speed mixing on the relative errors of the first natural frequencies the first order natural frequency of the plates and beams are emphatically studied. The results show that the natural frequency of the three structures decreases gradually with the increasing axially speed. The panel is a simplified model of the plate. The damping has the least effect on the first order natural frequency when other parameters change. The complex model can be simplified into a simple model when the moving structure has a large aspect ratio and a small axial speed.
  • [1] 陈玲, 唐有绮 . 时变张力作用下轴向运动梁的分岔与混沌. 力学学报, 2019(4):1180-1188
    [1] ( Chen Ling, Tang Youqi . Bifurcation and chaos of axially moving beams under time-varying tension. Chinese Journal of Theoretical and Applied Mechanics, 2019(4):1180-1188 (in Chinese))
    [2] 曹东兴, 马鸿博, 张伟 . 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019(4)
    [2] ( Cao Dongxing, Ma Hongbo, Zhang Wei . Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2019(4)(in Chinese))
    [3] 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019(4)
    [3] ( Wu Ji, Zhang Dingguo, Li Liang , et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019(4)(in Chinese))
    [4] Ding H, Zhang Z, Chen LQ . Vibration reduction effect of one-way clutch on belt-drive systems. European Journal of Mechanics-A/Solids, 2018,71:378-385
    [5] Ding H, Wang S, Zhang YW . Free and forced nonlinear vibration of a transporting belt with pulley support ends. Nonlinear Dynamics, 2018,92(4):2037-2048
    [6] Ding H, Lim CW, Chen LQ . Nonlinear vibration of a traveling belt with non-homogeneous boundaries. Journal of Sound and Vibration, 2018,424:78-93
    [7] 华洪良, 廖振强, 张相炎 . 轴向移动悬臂梁高效动力学建模及频率响应分析. 力学学报, 2017,49(6):1390-1398
    [7] ( Hua hongliang, Liao Zhenqiang, Zhang Xiangyan . An efficient dynamic modeling method of an axially moving cantilever beam and frequency response analysis. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1390-1398 (in Chinese))
    [8] 高崇一, 杜国君, 李蕊 等. 考虑轧机主传动系统扭振的带钢非线性振动研究. 机械强度, 2019,41(2):9-15
    [8] ( Gao Chongyi, Du Guojun, Li Rui , et al. Nonlinear vibration of strip steel considering torsional vibration of rolling mill main drive system is studied. Journal of Mechanical Strength, 2019,41(2):9-15 (in Chinese))
    [9] 张原勋 . 时变张力作用下轴向运动黏弹性板的力学特性. [硕士论文]. 上海应用技术大学, 2018
    [9] ( Zhang Yuanyun . Mechanical properties of axially moving viscoelastic plates under time-varying tension. [Master Thesis]. Shang Hai Institute of Technolegy, 2018 (in Chinese))
    [10] 张登博, 唐有绮, 陈立群 . 非齐次边界条件下轴向运动梁的非线性振动. 力学学报, 2019,51(1):218-227
    [10] ( Zhang Dengbo, Tang Youqi, Chen Liqun . Nonlinear vibration of an axially moving beam with nonhomogeneous boundary conditions. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):218-227 (in Chinese))
    [11] 张超越, 滕英元, 方勃 . 多场耦合黏弹性轴向运动板减振分析. 沈阳航空航天大学学报, 2018,35(4):53-59
    [11] ( Zhang Chaoyue, Teng Yingyuan, Fang Bo . Vibration reduction analysis of multi-field coupled viscoelastic axial moving plate. Journal of Shenyang University of Aeronautics and Astronautics, 2018,35(4):53-59 (in Chinese))
    [12] 杨鑫, 陈海波 . 热冲击作用下轴向运动梁的振动特性研究. 振动与冲击, 2017,36(1):8-15
    [12] ( Yang Xin, Chen Haibo . Study on vibration characteristics of axial moving beam under thermal shock. Journal of Vibration and Shock, 2017,36(1):8-15 (in Chinese))
    [13] 胡璐, 闫寒, 张文明 等. 黏性流体环境下?型悬臂梁结构流固耦合振动特性研究. 力学学报, 2018,50(3):643-653
    [13] ( Hu Lu, Yan Han, Zhang Wenming , et al. Analysis of flexural vibration of V-shaped beams immersed in viscous fluids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):643-653(in Chinese))
    [14] 李彪, 唐有绮, 丁虎 等. 轴向运动黏弹性 Timoshenko 梁横向非线性强受迫振动. 振动与冲击, 2012,31(13):142-146
    [14] ( Li Biao, Tang Youqi, Ding Hu , et al. Transverse non-linearity of Timoshenko beams in axial motion is strong forced vibration. Journal of Vibration and Shock, 2012,31(13):142-146 (in Chinese))
    [15] 高晨彤, 黎亮, 章定国 等. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真. 力学学报, 2018,50(3):654-666
    [15] ( Gao Chentong, Li Liang, Zhang Dingguo , et al. Dynamic modeling and simulation of rotating FGM tapered beams with shear effect. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):654-666 (in Chinese))
    [16] Jeronen J . On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid: a study into paper production in mathematical terms. Jyv?skyl?: Jyv?skyl? Studies in Computing, 2011
    [17] Banichuk N, Jeronen J, Neittaanm?ki P , et al. Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid. Journal of Fluids and Structures, 2010,26(2):274-291
    [18] Jeronen J, Tuovinen T, Neittaanm?ki P , et al. Instability analysis of axially travelling membranes and plates interacting with axially moving ideal fluid. Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics. 2009 ( 11):101-104
    [19] Saksa T, Jeronen J, Tuovinen T . Stability of moving viscoelastic panels interacting with surrounding fluid. Rakenteiden Mekaniikka (Journal of Structural Mechanics), 2012,45(3):88-103
    [20] 罗骄 . 对边简支部分浸液板的非线性振动分析. [硕士论文]. 东北大学, 2010
    [20] ( Luo Jao . Nonlinear vibration analysis of submerged liquid plate with simply supported edge. [Master Thesis]. Northeastern University, 2010 (in Chinese))
    [21] Banichuk N, Jeronen J, Neittaanm?ki P , et al. Dynamic behaviour of an axially moving plate undergoing small cylindrical deformation submerged in axially flowing ideal fluid. Journal of Fluids and Structures, 2011,27(7):986-1005
    [22] 邵明月, 武吉梅, 王砚 等. 变密度印刷纸带的非线性自由振动特性分析. 机械强度, 2019 ( 1):1
    [22] ( Shao Mingyue, Wu Jimei, Wang Yan , et al. Analysis of nonlinear free vibration characteristics of variable-density printed paper tape. Journal of Mechanical Strength, 2019 ( 1):1
    [23] 胡宇达, 张金志 . 轴向运动载流导电板磁热弹性耦合动力学方程. 力学学报, 2013,45(5):792-796
    [23] ( Hu Yuda, Zhang Jinzhi . Dynamic equation of magnetothermoelastic coupling of an axially moving current-carrying conducting plate. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(5):792-796 (in Chinese))
    [24] Armand Robinson MT . Analysis of the vibration of axially moving viscoelastic plate with free edges using differential quadrature method. Journal of Vibration and Control, 2018,24(17):3908-3919
    [25] Robinson MTA, Adali S . Effects of the thickness on the stability of axially moving viscoelastic rectangular plates. Applied Acoustics, 2018,140:315-326
    [26] Shu C, Du H . A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates. International Journal of Solids and Structures, 1997,34(7):837-846
    [27] Malik M, Bert CW . Implementing multiple boundary conditions in the DQ solution of higher-order PDEs: application to free vibration of plates. International Journal for Numerical Methods in Engineering, 1996,39(7):1237-1258
    [28] Shu C, Chew Y T . On the equivalence of generalized differential quadrature and highest order finite difference scheme. Computer methods in Applied Mechanics and Engineering, 1998,155(3-4):249-260
    [29] Kim J, Cho J, Lee U , et al. Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Computers & Structures, 2003,81(20):2011-2020
    [30] Shu C, Chen W . On optimal selection of interior points for applying discretized boundary conditions in DQ vibration analysis of beams and plates. Journal of Sound and Vibration, 1999,222(2):239-257
    [31] 高维成, 刘伟, 孙毅 等. 自由-自由结构模态参数提取方法研究. 宇航学报, 2007,28(4):991-995
    [31] ( Gao Weicheng, Liu Wie, Shun Yi , et al. Free-free structure modal parameter extraction method. Journal of Astronautics, 2007,28(4):991-995 (in Chinese))
    [32] 姜世杰, 史银芳, Yannick S , 等. FDM薄板振动特性的理论与实验研究. 东北大学学报(自然科学版), 2019,40(4):63-67
    [32] ( Jiang Shijie, Shi Yinfang, Yannick S , et al. retical and experimental study on vibration characteristics of FDM thin plates. Journal of Northeastern University(Natural Science Edition), 2019,40(4):63-67 (in Chinese))
    [33] Wang F, Xu LN, Sui SB . Free vibration analysis of carbon nanotubes by timoshenko beam mode and thin-plate spline radial basis function. Applied Mechanics and Materials, 2013, 365-366:1207-1210
    [34] Zhong Z, Lizhong Z, Zhihua T , et al. Flexural vibration of space aluminium alloy beam and plate at low temperatures. Cryogenics, 1994,34:489-492
    [35] Shen YJ, Wen SF, Li XH , et al. Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method. Nonlinear Dynamics, 2016,85(3):1457-1467
    [36] Wen S, Shen Y, Li X , et al. Dynamical analysis of fractional-order Mathieu equation. Journal of Vibroengineering, 2015,17(5):2696-2709
    [37] Tang YQ, Zhang DB, Gao JM . Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dynamics, 2016,83(1-2):401-418
    [38] 刘金堂, 杨晓东, 闻邦椿 . 基于微分求积法的轴向运动板横向振动分析. 振动与冲击, 2009,28(3):178-181
    [38] ( Liu Jintang, Yang Xiaodong, Wen Bangchun . Lateral vibration analysis of axial moving plate based on differential quadrature method. Journal of Vibration and Shock, 2009,28(3):178-181 (in Chinese))
    [39] Banichuk N, Jeronen J, Neittaanm?ki P , et al. Mechanics of Moving Materials. New York: Springer International Publishing, 2014
    [40] 杨晓东, 傅景礼 . Galerkin 截断方法在轴向运动梁问题中的应用. 商丘师范学院学报, 2005,21(5):9-13
    [40] ( Yang Xiaodong, Fu Jingli . Application of Galerkin truncation method to the problem of axial moving beam. Journal of Shangqiu Teachers College, 2005,21(5):9-13 (in Chinese))
    [41] 曹志远 . 板壳振动理论. 北京: 中国铁道出版社, 1989
    [41] ( Cao Zhiyuan , Theory of Plate and Shell Vibration. Beijing: China Railway Publishing House, 1989 (in Chinese))
    [42] Chen LQ, Tang YQ . Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Journal of Vibration and Acoustics, 2012,134(1):011008
    [43] 唐有绮 . 轴向运动梁和面内平动板横向振动的建模与分析. [博士论文]. 上海: 上海大学, 2011
    [43] ( Tang Youqi . Modeling and analysis of transverse vibration of axial moving beam and in-plane translational plate. [PhD Thesis]. Shanghai: Shanghai University, 2011 (in Chinese))
  • 期刊类型引用(5)

    1. 王馨悦,随岁寒,李成. 考虑运动效应的直梁振动的解析解与传递矩阵解. 常州工学院学报. 2023(03): 1-8 . 百度学术
    2. 崔雪,孔祥清,胡宇达. 磁场中轴向运动铁磁梁固有振动与内共振的理论及数值模拟研究. 振动与冲击. 2023(18): 190-198 . 百度学术
    3. 张芳芳,随岁寒,晋会杰,庞静艺,王浩然. 轴向运动薄板的自由振动分析. 井冈山大学学报(自然科学版). 2022(04): 70-77 . 百度学术
    4. 李枭俊,甘磊,陈展,刘兰,吴积钦,闫雅斌. 刚性接触网腕臂型支持装置的振动特性分析与结构优化. 振动与冲击. 2021(12): 203-209 . 百度学术
    5. 陈喜,唐有绮,柳爽. 磁场作用下轴向运动功能梯度Timoshenko梁的振动特性. 振动工程学报. 2021(06): 1161-1168 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1848
  • HTML全文浏览量:  292
  • PDF下载量:  139
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-10-30
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回