EI、Scopus 收录
中文核心期刊

HTPB复合底排药压缩屈服应力模型研究

武智慧, 牛公杰, 郝玉风, 钱建平, 刘荣忠

武智慧, 牛公杰, 郝玉风, 钱建平, 刘荣忠. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6): 1810-1819. DOI: 10.6052/0459-1879-19-200
引用本文: 武智慧, 牛公杰, 郝玉风, 钱建平, 刘荣忠. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6): 1810-1819. DOI: 10.6052/0459-1879-19-200
Wu Zhihui, Niu Gongjie, Hao Yufeng, Qian Jianping, Liu Rongzhong. RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810-1819. DOI: 10.6052/0459-1879-19-200
Citation: Wu Zhihui, Niu Gongjie, Hao Yufeng, Qian Jianping, Liu Rongzhong. RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810-1819. DOI: 10.6052/0459-1879-19-200
武智慧, 牛公杰, 郝玉风, 钱建平, 刘荣忠. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6): 1810-1819. CSTR: 32045.14.0459-1879-19-200
引用本文: 武智慧, 牛公杰, 郝玉风, 钱建平, 刘荣忠. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6): 1810-1819. CSTR: 32045.14.0459-1879-19-200
Wu Zhihui, Niu Gongjie, Hao Yufeng, Qian Jianping, Liu Rongzhong. RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810-1819. CSTR: 32045.14.0459-1879-19-200
Citation: Wu Zhihui, Niu Gongjie, Hao Yufeng, Qian Jianping, Liu Rongzhong. RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810-1819. CSTR: 32045.14.0459-1879-19-200

HTPB复合底排药压缩屈服应力模型研究

基金项目: 1) 国家自然科学基金资助项目(11402248)
详细信息
    通讯作者:

    钱建平

  • 中图分类号: TJ45,O345,TB324

RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN

  • 摘要: 目前广泛应用于底排增程技术的 HTPB 复合底排药 (composite base bleed grain,CBBG) 是一种颗粒填充含能材料,战场环境中将承受冲击、温度等载荷作用. 为研究 HTPB CBBG 冲击压缩力学性能,进行了不同温度 (233$\sim$323 K) 和应变率 (1100$\sim$7900 s$^{-1}$) 下的分离式霍普金森压杆实验. 实验结果表明,各工况下,应力应变曲线均呈现屈服-$\!$-应变硬化特征,HTPB CBBG 保持高韧性. 提高应变率和降低温度均导致相同应变下的应力幅值上升,但温度较应变率对HTPB CBBG 冲击压缩力学性能的影响更为显著. 基于所研究温度范围高于 HTPB CBBG 玻璃化转变温度,通过将水平、垂直移位因子与温度的关系表示为 WLF 方程的形式,将时温等效原理引入协同模型,并计及内应力的应变率增强效应,提出了一种新的屈服应力模型.选取参考温度,利用水平、垂直移位因子-$\!$-温度曲线和屈服应力主曲线拟合模型参数.模型预测值与实验数据对比结果表明:该模型可准确表征 233$\sim$323 K 时 HTPB CBBG 屈服应力的双线性应变率相关性,明确了较低和较高应变率时,应变率效应分别主要由内应力和驱动力贡献.
    Abstract: HTPB composite base bleed grain (CBBG), which has been widely applied to the base bleed extended-range technology, is a typical particle-filled energetic material and bears both impact and temperature loads in battlefield environments. In order to investigate impact compressive mechanical properties of HTBP CBBG, split Hopkinson pressure bar experiments were conducted at various temperatures and strain rates, ranging from 233 to 323 K and from 1100 to 7900 s$^{-1}$. True stress-true strain curves shows that HTPB CBBG yields and then deforms plastically with strain hardening effect and maintains high toughness under each experimental condition. The stress value at a certain strain increases with the increase of strain rate and the decrease of temperature, but temperature has a more significant influence on impact compressive mechanical behaviors of HTPB CBBG than strain rate. On the one hand, the time-temperature superposition principle was introduced into the cooperative model by taking the correlations between horizontal/vertical shift factor and temperature as WLF function-type equations based on the fact that the temperature range discussed here was higher than the glassy transition temperature of HTPB CBBG. One the other hand, the enhancement effect of strain rate of internal stress was also taken into consideration, and then a new stress model was proposed. The smooth horizontal shift factor-temperature curve, vertical shift factor-temperature curve and master curve of yield stress were built at a reference temperature according to experimental results to obtain the parameters in the proposed model. The comparison between the model prediction and experimental data indicates that the developed model can precisely describe the bilinear dependence of yield stress on strain rate at temperatures of 233$\sim $323 K. The proposed model points out that the strain rate effect is derived from internal stress at low strain rates while it is derived from drive stress at high strain rates.
  • 1 刘志林, 王晓鸣, 姚文进 等. 底排药的高应变率动态响应实验和仿真. 含能材料, 2014,22(4):529-534
    1 ( Liu Zhilin, Wang Xiaoming, Yao Wenjin, et al. Numerical simulation and mechanical behavior of base bleed grain at high strain rate. Chinese Journal of Energetic Materials, 2014,22(4):529-534 (in Chinese))
    2 陈劲操, 周彦煌, 郎明君 . 药温测量中环境温度的作用及精确测定. 弹道学报, 2001,13(3):33-37
    2 ( Chen Jincao, Zhou Yanhuang, Lang Mingjun. Ambient temperature action and precision detection in chamber temperature measurement. Journal of Ballistics, 2001,13(3):33-37 (in Chinese))
    3 王哲军, 强洪夫, 王广 等. 固体推进剂力学性能和本构模型研究进展. 含能材料, 2016,24(4):403-416
    3 ( Wang Zhejun, Qiang Hongfu, Wang Guang, et al. Review on the mechanical properties and constitutive models of solid propellants. Chinese Journal of Energetic Materials, 2016,24(4):403-416 (in Chinese))
    4 肖有才 . PBX 炸药的动态力学性能和冲击损伤行为研究.[博士论文]. 哈尔滨:哈尔滨工业大学, 2016
    4 ( Xiao Youcai . Study of dynamic mechanical property and impact damage behavior of PBX.[PhD Thesis]. Harbin: Harbin Institute of Technology, 2016 (in Chinese))
    5 唐明峰 . 浇注 PBX 的力学行为与本构模型研究. [硕士论文]. 绵阳:中国工程物理研究院, 2014
    5 ( Tang Mingfeng . Study of mechanical properties and constitutive model of PBX. [Master Thesis]. Mianyang: China Academy of Engineering Physics, 2014 (in Chinese))
    6 Wang ZJ, Qiang HF, Wang G. Experimental investigation on high strain rate tensile behavior of HTPB propellant at low temperatures . Propellants, Explosives, Pyrotechnics, 2015,40(6):814-820
    7 Wang ZJ, Qiang HF, Wang TJ, et al. A thermovisco-hyperelstic constitutive model of HTPB propellant with damage at intermediate strain rate. Mechanics of Time-Dependent Materials, 2018,22(3):291-341
    8 周海霞, 李世鹏, 谢侃 等. HTPB 推进剂宽泛应变率下粘弹性本构模型研究. 固体火箭技术, 2017,40(3):325-330
    8 ( Zhou Haixia, Li Shipeng, Xie Kan, et al. Research on the viscoelastic constitutive model of HTPB propellant over a wide range of strain rates. Journal of Solid Rocket Technology, 2017,40(3):325-330 (in Chinese))
    9 Chen XD, Lai JW, Chang XL, et al. Compressive mechanical properties of HTPB propellant at low temperatures and high strain rate. Results in Phsics, 2017,7:4079-4084
    10 杨龙 . CMDB 和 HTPB 推进剂力学行为的应变率相关性及本构模型.[博士论文]. 北京:北京理工大学, 2016
    10 ( Yang Long . Strain-rate dependency and constitutive model of mechanical behaviors of CMDE and HTPB propellant. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2016 (in Chinese))
    11 孙朝翔 . 宽泛应变率和温度下改性双基推进剂本构模型及应用研究. [博士论文]. 南京:南京理工大学, 2017
    11 ( Sun Chaoxiang . A constitutive model for modified double-base propellant over a wide range of strain rate and temperatures and its application. [PhD Thesis]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese))
    12 曹翌军, 黄卫东, 李金飞 . HTPB 推进剂非线性粘弹特性的时温等效研究. 推进技术, 2018,39(7):1634-1649
    12 ( Cao Yijun, Huang Weidong, Li Jinfei. Time-temperature equivalent research of nonlinear viscoelastic properties of HTPB propellant. Journal of Propulsion Technology, 2018,39(7):1634-1649 (in Chinese))
    13 Mulliken AD . Low to high strain rate deformation of amorphous polymers: Experiments and Modeling. [PhD Thesis]. Cambridge: Massachusetts Institute of Technology, 2004
    14 傅政 . 高分子材料强度及破坏行为. 第 1 版. 北京: 化学工业出版社, 2005: 7-33
    14 ( Fu Zheng. Strength and Failure Behaviors of Polymer. First Edition. Beijing: Chemical Industry Press, 2005: 7-33(in Chinese))
    15 Eyring H. Viscosityplasticity and diffusion as examples of absolute reaction rates. Journal of Chemical Physics, 1936,4(4):283-291
    16 Bauwes-Crowet C, Bauwens JC, Homes G. Tensile yield-stress behavior of glassy polymers. Journal of Polymer Science, 1969,7:735-742
    17 Omar MF, Akil HM, Ahmad ZA. Measurement and prediction of compressive properties of polymers at high strain rate loading. Materials and Design, 2011,32(8-9):4207-4215
    18 Povolo F, Hermida EB. Phenomenological description of strain rate and temperature-dependent yield stress of PMMA. Journal of Applied Polymer Science, 1995,58(1):55-68
    19 Richeton J, Ahzi S, Daridon L, et al. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer, 2005,46(16):6035-6043
    20 Gueguen O, Richeton J, Ahzi S, et al. Micromechanically based formulation of the cooperative model for the yield behavior of semi-crystalline polymers. Acta Materialia, 2008,56(7):1650-1655
    21 Gomez-del RT, Rodriguez J. Compression yielding of polypropylenes above glass transition temperature. European Polymer Journal, 2010,46(6):1244-1250
    22 邓小秋, 李志强, 周志伟 等. MDYB-3 有机玻璃在不同应变率下的移位屈服应力行为. 爆炸与冲击, 2015,35(3):312-319
    22 ( Deng Xiaoqiu, Li Zhiqiang, Zhou Zhiwei, et al. One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rate. Explosion and Shock Waves, 2015,35(3):312-319 (in Chinese))
    23 Gomez-del Rio T, Rodriguez J. Compression yielding of epoxy: Strain rate and temperature effects. Materials and Design, 2012,35:369-373
    24 Argon AS. A theory for the low-temperature plastic deformation of glassy polymers. Philosophical Magazine, 1973,28(3):839-865
    25 卢芳云, 陈荣, 林玉亮 等. 霍普金森杆实验技术. 第 1 版. 北京: 科学出版社, 2015: 30-38
    25 ( Lu Fangyun, Chen Rong, Lin Yuliang , et al. Hopkinson bar techniques. First Edition. Beijing: Science Press, 2015: 30-38(in Chinese))
    26 王宝珍, 胡时胜 . 猪肝动态力学性能及本构模型研究. 力学学报, 2017,49(6):1399-1408
    26 ( Wang Baozhen, Hu Shisheng. Research on dynamic mechanical response and constitutive model of porcine liver. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1399-1408 (in Chinese))
    27 王增会, 李锡夔 . 基于介观力学信息的颗粒材料损伤-愈合与塑性宏观表征. 力学学报, 2018,50(2):284-296
    27 ( Wang Zenghui, Li Xikui. Meso-mechanically informed macroscopic characterization of damage-healing-plasticity for granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):284-296 (in Chinese))
    28 沈超敏, 李斯宏 . 颗粒材料破碎演化路径细观热力学机制. 力学学报, 2019,51(1):16-25
    28 ( Shen Chaomin, Li Sihong. Evolution path for the particle breakage of granular materials: A micromechanical and thermodynamic insight. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):16-25 (in Chinese))
    29 Jiang J, Xu JS, Zhang ZS, et al. Rate-dependent compressive behavior of EPDM insulation: Experimental and constitutive analysis. Mechanics of Materials, 2016,96:30-38
    30 Boyce MC, Socrate S, Llana PG. Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition. Polymer, 2000,41(6):2183-2201
    31 Srivastava V, Chester SA, Ames NM, et al. A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. International Journal of Plasticity, 2010,26(8):1138-1182
    32 罗鑫, 许金余, 卢京平 等. 碱矿渣粉煤灰混凝土的冲击损伤特性. 建筑材料学报, 2014,17(6):1087-1091
    32 ( Luo Xin, Xu Jinyu, Lu Jingping, et al. Impact damage characteristics of alkali active slag and fly ash based concrete. Journal of Building Materials, 2014,17(6):1087-1091 (in Chinese))
    33 Fotheringham DG, Cherry BW. The role of recovery forces in the deformation of linear polyethylene. Journal of Materials Science, 1978,13(5):951-964
    34 周光泉, 刘孝敏 . 粘弹性理论. 第 1 版. 合肥: 中国科学技术大学出版社, 1996: 79-84
    34 ( Zhou Guangquan, Liu Xiaomin. Viscoelasticity Theory. First Edition. Hefei: University of Science and Technology of China Press, 1996: 79-84(in Chinese))
    35 王宝珍, 周相荣, 胡时胜 . 高应变率下橡胶的时温等效关系及力学形态. 高分子材料与科学, 2008,24(8):5-8
    35 ( Wang Baozhen, Zhou Xiangrong, Hu Shisheng. Dynamic mechanical behavior and rate-temperature equivalence of rubber. Polymer Materials Science and Engineering, 2008,24(8):5-8 (in Chinese))
    36 Ho SY, Fong CW. Temperature dependence of high strain-rate impact fracture behavior in highly filled polymeric composite and plasticized thermoplastic propellants. Journal of Materials Science, 1987,22:3023-3031
    37 Wang J, Xu YJ, Zhang WH, et al. A damage-based elastic-viscoplastic constitutive model for amorphous glassy polycarbonate polymers. Materials and Design, 2016,97:519-531
计量
  • 文章访问数:  1596
  • HTML全文浏览量:  282
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回