EI、Scopus 收录
中文核心期刊
洪启臻, 王小永, 孙泉华. 高温非平衡流动中的氧分子振动态精细分析[J]. 力学学报, 2019, 51(6): 1761-1774. DOI: 10.6052/0459-1879-19-145
引用本文: 洪启臻, 王小永, 孙泉华. 高温非平衡流动中的氧分子振动态精细分析[J]. 力学学报, 2019, 51(6): 1761-1774. DOI: 10.6052/0459-1879-19-145
Hong Qizhen, Wang Xiaoyong, Sun Quanhua. DETAILED ANALYSIS OF VIBRATIONAL STATES OF OXYGEN IN HIGH TEMPERATURE NON-EQUILIBRIUM FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1761-1774. DOI: 10.6052/0459-1879-19-145
Citation: Hong Qizhen, Wang Xiaoyong, Sun Quanhua. DETAILED ANALYSIS OF VIBRATIONAL STATES OF OXYGEN IN HIGH TEMPERATURE NON-EQUILIBRIUM FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1761-1774. DOI: 10.6052/0459-1879-19-145

高温非平衡流动中的氧分子振动态精细分析

DETAILED ANALYSIS OF VIBRATIONAL STATES OF OXYGEN IN HIGH TEMPERATURE NON-EQUILIBRIUM FLOWS

  • 摘要: 高超声速流动在头激波压缩后常处于高 温条件下的热化学非平衡状态. 本文采用态-态方法和双温度模型计算分析了一维正激波后和高超声速钝体绕流驻点线上的氧气热化学非平衡流动. 态-态方法将氧气的每个振动能级当成独立的组分,通过耦合 Euler 方程或驻点线上的降维 Navier-Stokes 方程,数值求解得 到了高温流动中的精细热化学非平衡状态. 而双温度模型假设氧气的振动能级服从 Boltzmann 分布,通过求解振动能方程得到振动温度. 一维正激波后热化学松弛过程的计算结果表明,态-态计算预测的温度分布和氧原子浓度分布较好地吻合了文 献中的实验结果,而经典的双温度模型的预测结果误差较大,且不同双温度模型的计算结果比较发散. 态-态方法详细地给出了所有振动能级的变化过程. 无论是正激波还是脱体激波后的流场,都是高振动能级首先得到激发;但是数密度大的低振动能级先达到热平衡,而高能级 分子要经过很长距离后才能达到热平衡. 在驻点附近,复合反应生成的氧气分子处于高振动能级,导致高振动能级分子数密度显著高于平衡分布. 计算还发现,经典双温度模型的离解反应速率明显偏离态-态计算结果,无法准确体现振动离解耦合效应对离解反应 速率的影响,但是 Park 双温度模型将离解失去的振动能取为 0.3\sim 0.5 倍分子离解能是比较合理的.

     

    Abstract: Hypersonic flow is usually in a thermochemical nonequilibrium state due to high temperature after the bow shock. In this paper, the state-to-state method and two-temperature models are employed to study the thermochemical nonequilibrium processes of oxygen for a post-shock flow and a flow over a blunt body along the stagnation line. The state-to-state method treats each vibrational energy level of molecular oxygen as an independent species, and predicts the number density of each vibrational level by coupling the Euler equations or reduced Navier-Stokes equations along the stagnation line. The two-temperature models assume that all vibrational levels follow the Boltzmann distribution at a vibrational temperature, and a vibrational energy equation is solved to obtain the vibrational temperature. Simulation results show that the distributions of the temperature and species concentration predicted by the state-to-state method are in good agreement with the available experimental results in the literature, while the classical two-temperature models show large errors and the results of different two-temperature models are scattered. The state-to-state method gives detailed information of all vibrational levels along the streamline. After the normal shock or bow shock, the high vibrational levels are first excited but low levels with large number density will reach thermal equilibrium first, whereas high level molecules reach thermal equilibrium only after a long distance. Near the stagnation point, the recombination reaction produces oxygen molecules that are at high vibrational levels, thus the number density of a high vibration level is significantly higher than that of the equilibrium distribution. It is also found that the dissociation rate of classical two-temperature models deviates from the state-to-state result, which cannot accurately account for the coupling effects of vibration dissociation on the dissociation rate. However, it is reasonable for Park’s two-temperature model to take the vibration energy lost by dissociation to be 0.3\sim0.5 times of the molecular dissociation energy.

     

/

返回文章
返回