EI、Scopus 收录
中文核心期刊

波浪破碎的一种混合湍流模拟模式

詹杰民, 李熠华

詹杰民, 李熠华. 波浪破碎的一种混合湍流模拟模式[J]. 力学学报, 2019, 51(6): 1712-1719. DOI: 10.6052/0459-1879-19-321
引用本文: 詹杰民, 李熠华. 波浪破碎的一种混合湍流模拟模式[J]. 力学学报, 2019, 51(6): 1712-1719. DOI: 10.6052/0459-1879-19-321
Zhan Jiemin, Li Yihua. A HYBRID TURBULENCE MODEL FOR WAVE BREAKING SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1712-1719. DOI: 10.6052/0459-1879-19-321
Citation: Zhan Jiemin, Li Yihua. A HYBRID TURBULENCE MODEL FOR WAVE BREAKING SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1712-1719. DOI: 10.6052/0459-1879-19-321
詹杰民, 李熠华. 波浪破碎的一种混合湍流模拟模式[J]. 力学学报, 2019, 51(6): 1712-1719. CSTR: 32045.14.0459-1879-19-321
引用本文: 詹杰民, 李熠华. 波浪破碎的一种混合湍流模拟模式[J]. 力学学报, 2019, 51(6): 1712-1719. CSTR: 32045.14.0459-1879-19-321
Zhan Jiemin, Li Yihua. A HYBRID TURBULENCE MODEL FOR WAVE BREAKING SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1712-1719. CSTR: 32045.14.0459-1879-19-321
Citation: Zhan Jiemin, Li Yihua. A HYBRID TURBULENCE MODEL FOR WAVE BREAKING SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1712-1719. CSTR: 32045.14.0459-1879-19-321

波浪破碎的一种混合湍流模拟模式

基金项目: 1) 国家重点项目(6140206040301);广东省科技计划项目资助(2016A050502022)
详细信息
    通讯作者:

    詹杰民

A HYBRID TURBULENCE MODEL FOR WAVE BREAKING SIMULATION

  • 摘要: 近岸波浪的变形与破碎,一方面影响水体标识码运输,另一方面对消波护岸具有指导意义.本文提出一种三维混合湍流模拟模式方法,将求解区域分为造波区、波浪传播区和消波区. 造波区采用层流模式,通过基于 Fluent 的二次开发的 UDF 方法在边界进行速度造波.这种方法在给定入口速度的条件标识码据已知波高进行 精准插值,从而控制水的体积分数. 在波浪传播区域,采用大涡标识码行模拟研究,在消波区,采用 RANS 模型并利用多孔介质消波法进行消波. 模标识码 VOF 方法捕捉波浪破碎过程中的自由面变化.本文对波高为 5.5cm 的规则波 (M1)、波高为 13.5cm 的 规则波 (M3)、有效标识码 7.75cm 的 TMA 谱单向不规则波 (U1) 和有效波高为 19cm 的 TMA 谱多向不规则波 (B5) 展开标识码研究,并与前人的相关标识码果作比较,各条件下模拟结果与实验结果吻合.模拟结果说明本文提出的模型能够准确模拟出波浪传播过程中的折射和标识码象,并且能够捕捉的波浪破碎过程中的自由面变化,为三维波浪的传播与破碎的数值模拟提供一种模拟方法.
    Abstract: On the one hand, the deformation and breaking of near-shore waves affect the transportation of water and sediment, and on the other hand, it is of guiding significance for wave elimination and revetment. In this paper, a 3-dimensional hybrid turbulence simulation model is proposed. Laminar flow mode is adopted in the wave-making region, and velocity wave-making is carried out at the boundary through the User Defined Function(UDF) developed based on fluent. This method can control the volume fraction of water by precise interpolation according to the known wave height under the condition of given inlet velocity. In the wave propagation region, large eddy simulation (LES) is used for simulation research, and in the wave elimination region, RANS model with the porous media wave absorber is used for wave elimination. The model uses the VOF method to capture the free surface changes in the process of wave breaking. This paper carried out simulation studies on the regular wave (M1) with a wave height of 5.5cm, the regular wave (M3) with a wave height of 13.5cm, the unidirectional irregular wave (U1) with a TMA spectrum with an effective wave height of 7.75cm and the multidirectional irregular wave (B5) with an effective wave height of 19cm. Simulation results show that the proposed model can accurately simulate the wave propagation in the process of refraction and diffraction phenomenon, and be able to catch the waves of the free surface in the process of change, broken for 3D wave propagation and broken numerical simulation provides a method of simulation.
  • 1 孙宝楠, 连展, 杨永增 . 波浪破碎过程对油滴垂直混合影响的数值模拟及实际验证. 船海工程, 2018,47(2):15-19
    1 ( Sun Baonan, Lian Zhan, Yang Yongzeng . Numerical simulation and verification of the impact of wave breaking to the vertical mixing of oil drops. Ship Ocean Engineering, 2018,47(2):15-19 (in Chinese))
    2 Kim DH, Son SY . Role of shelf geometry and wave breaking in single N-type tsunami runup under geophysical-scale. Ocean Modelling, 2019,138:13-22
    3 Sriram R, Stagonas S . Characterization of breaking wave impact on vertical wall with recurve. ISH Journal of Hydraulic Engineering, 2019,25(2):153-161
    4 Peregrine DH . Long waves on a beach. Journal of Fluid Mechanics, 1967,27(4):815-827
    5 郑茜, 张陈浩 . 近岸带珊瑚礁台波浪破碎变形流场结构的试验和数值模拟. 中国港湾建设, 2019,39(2):36-40
    5 ( Zheng Qian, Zhang Chenhao . Experimental and numerical simulation on flow field structure of wave breaking deformation at coral reefstation in the nearshore. China Harbour Engineering, 2019,39(2):36-40 (in Chinese))
    6 张陈浩, 郑茜 . 基于OpenFOAM的浅滩波浪破碎区气液两相流耦合模拟. 水运工程, 2018(11):38-42
    6 ( Zhang Chenhao, Zheng Qian . Simulation of gas-liquid two-phase flow coupling in wave surf zone in shallow water based on OpenFOAM. Port & Waterway Engineering, 2018(11):38-42 (in Chinese))
    7 许璐璐, 郄禄文 . 基于SPH法波浪破碎数值模拟分析. 山西建筑, 2018,44(12):218-220
    7 ( Xu Lulu, Qie Luwen . Numerical simulation analysis of broken waves based on SPH technique. Shanxi Architecture, 2018,44(12):218-220 (in Chinese))
    8 张景新 . 基于非静压模型的波浪破碎模拟. 水科学进展, 2017,28(3):438-444
    8 ( Zhang Jingxin . Wave breaking simulation by non-hydrostatic numerical model. Advances in Water Science, 2017,28(3):438-444 (in Chinese))
    9 Liu JJ, Patrizia P, Zhang QH . Wave breaking analysis for the periodic rotation-two-component Camassa-Holm system. Nonlinear Analysis, 2019,187:214-228
    10 Luo L, Liu SX, Li JX , et al. Numerical simulation of oblique and multidirectional wave propagation and breaking on steep slope based on FEM model of Boussinesq equations. Applied Mathematical Modelling, 2019,71:632-655
    11 诸裕良, 宗刘俊, 赵红军 等. 复合坡度珊瑚礁地形上波浪破碎的试验研究. 水科学进展, 2018,29(2):717-727
    11 ( Chu Yuliang, Zong Liujun, Zhao Hongjun , et al. Experiment of wave breaking on coral reef topography with compound slope. Advances in Water Science, 2018,29(2):717-727 (in Chinese))
    12 柳淑学, 刘宁, 李金宣 等. 波浪在珊瑚礁地形上破碎特性试验研究. 海洋工程, 2015,33(2):42-49
    12 ( Liu Shuxue, Liu Ning, Li Jinxuan , et al. Study of wave breaking characteristic on coral reef topography. The Ocean Engineering, 2015,33(2):42-49 (in Chinese))
    13 柳淑学, 胡书义, 李金宣 等. 斜向和多向波浪的破碎指标研究. 水动力学研究与进展(A辑), 2017,32(4):423-432
    13 ( Liu Shuxue, Hu Shuyi, Li Jinxuan , et al. Research of diagonal and multidirectional wave breaking index. Chinese Journal of Hydrodynamics, 2017,32(4):423-432 (in Chinese))
    14 Vincent CL, Briggs MJ . Refraction - diffraction of irregular waves over a mound. Journal of Waterway Port Coastal and Ocean Engineering-ASCE, 1989,115(2):269-284
    15 詹杰民, 林东, 李毓湘 . 线性与非线性波的Chebyshev广义有限谱模拟. 物理学报, 2007(4):3649-3654
    15 ( Zhan Jiemin, Lin Dong, Li Yok-Sheng . Chebyshev generalized finite spectral method for linear and nonlinear waves. Acta Physica Sinica, 2007(4):3649-3654 (in Chinese))
    16 Gouin M, Ducrozet G, Ferrant P . Propagation of 3D nonlinear waves over an elliptical mound with a high-order spectral method. European Journal of Mechanics / B Fluids, 2017,63(Complete):9-24
    17 Zhan JM, Li YS, Wai OWH . Numerical modeling of multi-directional irregular waves incorporating 2-D numerical wave absorber and subgrid turbulence. Ocean Engineering, 2003,30(1):23-46
    18 Zou GL, Zhang QH . Improvement of absorbing boundary conditions for non-hydrostatic wave-flow model SWASH. Applied Mechanics and Materials, 2013, 353-356:2676-2682
    19 Kang L, Guo X . Depth-integrated, non-hydrostatic model using a new alternating direction implicit scheme. Journal of Hydraulic Research, 2013,51(4):368-379
    20 Zhan JM, Dong Z, Jiang W , et al. Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models. Ocean Engineering, 2010,7(14-15):1261-1272
    21 Griffiths LS, Porter R . Focusing of surface waves by variable bathymetry. Applied Ocean Research, 2012,34(none):150-163
    22 Choi J, Yoon SB . A three-dimensional numerical simulation of wave and current evolving over a submerged shoal. Coastal Engineering Journal, 2011,53(2):63-85
    23 Yin J, Sun JW, Wang XG , et al. A hybrid finite-volume and finite difference scheme for depth- integrated non-hydrostatic model. China Ocean Engineering, 2017,31(1):261-271
    24 Smit PB, Janssen TT . The evolution of inhomogeneous wave statistics through a variable medium. Journal of Physical Oceanography, 2013,43(8):1741-1758
    25 Hu KL, Ding PX . Numerical study of wave diffraction effect introduced in the SWAN model. China Ocean Engineering, 2007(3):128-139
    26 Chen XW, Zheng JH, Zhang C , et al. Evaluation of diffraction predictability in two phase averaged wave models. China Ocean Engineering, 2010,24(2):235-244
    27 Hajime M . Multi-directional random wave transformation model based on energy balance equation. Coastal Engineering Journal, 2001,43(4):317-337
    28 Janssen TT, Herbers THC . Nonlinear wave statistics in a focal zone. Journal of Physical Oceanography, 2009,39(8):1948-1964
    29 金红, 邹志利 . 具有精确色散性的非线性波浪数学模型. 力学学报, 2010,42(1):23-34
    29 ( Jin Hong, Zou Zhili . Non-linear wave model with accurate dispersion. Chinese Journal of Theoretical and Applied Mechanics, 2010,42(1):23-34 (in Chinese))
    30 Bouws E, Günther H, Rosenthal W , et al. Similarity of the wind wave spectrum in finite depth water: 1. Spectral form. Journal of Geophysical Research: Oceans, 1985,90:975-986
    31 金红 . 具有精确色散性的线性和非线性波浪模型. [博士论文]. 大连:大连理工大学, 2008
    31 ( Jin Hong . Linear and non-linear wave models with accurate dispersion. [PhD Thesis]. Dalian: Dalian University of Technology, 2008 (in Chinese))
  • 期刊类型引用(4)

    1. 薛庆仁,梁书秀,许媛媛,孙昭晨. 可控深水破碎波的实验室生成方法研究. 海洋学报. 2023(04): 46-56 . 百度学术
    2. 韦志龙,蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报. 2021(04): 973-985 . 本站查看
    3. 陈歆怡,王晓亮,刘青泉,张静. 滚波演化中聚合过程的数值模拟研究. 力学学报. 2021(05): 1457-1470 . 本站查看
    4. 邓斌,王孟飞,黄宗伟,伍志元,蒋昌波. 波浪作用下直立结构物附近强湍动掺气流体运动的数值模拟. 力学学报. 2020(02): 408-419 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  1206
  • HTML全文浏览量:  187
  • PDF下载量:  132
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-10-22
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回