EI、Scopus 收录
中文核心期刊

波浪扰动下河口幂律异重流的动力场分布特性

徐海珏, 吴金森, 白玉川

徐海珏, 吴金森, 白玉川. 波浪扰动下河口幂律异重流的动力场分布特性[J]. 力学学报, 2019, 51(6): 1699-1711. DOI: 10.6052/0459-1879-19-073
引用本文: 徐海珏, 吴金森, 白玉川. 波浪扰动下河口幂律异重流的动力场分布特性[J]. 力学学报, 2019, 51(6): 1699-1711. DOI: 10.6052/0459-1879-19-073
Xu Haijue, Wu Jinsen, Bai Yuchuan. DYNAMIC DISTRIBUTION OF POWER-LAW DENSITY CURRENT IN ESTUARY UNDER WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1699-1711. DOI: 10.6052/0459-1879-19-073
Citation: Xu Haijue, Wu Jinsen, Bai Yuchuan. DYNAMIC DISTRIBUTION OF POWER-LAW DENSITY CURRENT IN ESTUARY UNDER WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1699-1711. DOI: 10.6052/0459-1879-19-073
徐海珏, 吴金森, 白玉川. 波浪扰动下河口幂律异重流的动力场分布特性[J]. 力学学报, 2019, 51(6): 1699-1711. CSTR: 32045.14.0459-1879-19-073
引用本文: 徐海珏, 吴金森, 白玉川. 波浪扰动下河口幂律异重流的动力场分布特性[J]. 力学学报, 2019, 51(6): 1699-1711. CSTR: 32045.14.0459-1879-19-073
Xu Haijue, Wu Jinsen, Bai Yuchuan. DYNAMIC DISTRIBUTION OF POWER-LAW DENSITY CURRENT IN ESTUARY UNDER WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1699-1711. CSTR: 32045.14.0459-1879-19-073
Citation: Xu Haijue, Wu Jinsen, Bai Yuchuan. DYNAMIC DISTRIBUTION OF POWER-LAW DENSITY CURRENT IN ESTUARY UNDER WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1699-1711. CSTR: 32045.14.0459-1879-19-073

波浪扰动下河口幂律异重流的动力场分布特性

基金项目: 1) 科技部重点研发计划(2018YFC0407505);国家自然科学基金资助项目(41576093)
详细信息
    通讯作者:

    吴金森

    吴金森,白玉川

  • 中图分类号: TV148

DYNAMIC DISTRIBUTION OF POWER-LAW DENSITY CURRENT IN ESTUARY UNDER WAVE

  • 摘要: 河口底层浮泥异重流的运动特性对于河口维持以及港口航道泥沙淤积过程具有重要的作用, 是海岸学科研究的关键内容, 也是热点内容之一. 本文首先综述了河口泥沙异重流研究的重要意义, 分析并总结了各家异重流理论模型的不同点和适应条件; 其次, 根据本文研究问题的实际需要, 构建了波浪与底泥相互作用的双层流体理论分析模式, 将上层流体简化为常见的牛顿体, 而将下层流体的流变关系设置为幂律函数, 研究了波浪作用下河口底部幂律异重流的流场特性. 这些特性包括:波浪速度场、底泥运动的流速场、不同密度影响下的压力场以及异重流泥面波与表面 波的波幅比等, 分析了泥层密度、波动圆频率以及底泥幂律指数对流场及界面波的影响. 研究发现, 在波浪扰动下, 两层流体交界处速度分量连续, 压强出现突变. 在下部泥层中, 水平速度幅值曲线存在极大值. 随着波动圆频率增加以及泥层密度与流动指数的减小, 界面处上下压强差值呈现增大的趋势. 本模型与实测波幅比的数据进行对比结果证实了模型的合理性.
    Abstract: The kinetic characteristics of floating mud in the estuarine bottom play an important role on the deposition process in harbors or channels and the maintenance of estuaries. And the study on them has become one of the focuses of coastal researchers. In this paper, the significance of the study on sediment density flow in estuaries is summarized firstly, the differences and the conditions of the functions applied in the rheological relation of the mud by many investigators are analyzed. Then, according to the actual needs of the research problem in this paper, a two-layer fluid model with the upper-layer fluid setting as a Newtonian one and the lower-layer fluid being simplified as Non-Newtonian, was established under the wave motion. Additionally, as one of the important functions, the power law is adopted as the constitutive relation of the fluid. The flow field of the density current is then studied, including the velocities, pressures of the two layers fluids, the wave amplitude ratio of the interface to the free surface and so on. Additionally, the influences of the mud density, the circular frequency and the power-law exponent on the flow field are discussed in details. It is found that the velocities of the both layers are consistent with each other at the interface, while the pressure has a sudden change due to the existence of the velocity gradient along z-axis. In the lower layer, there is an extreme point in the curve of horizontal velocity amplitude. The differences of the pressures between the two layers become greater, with the increase of the circular frequency or the decrease of the mud density as well as the power-law exponent. Finally, the comparisons between the calculated results and the experimental data prove the validity of the model.
  • 1 白静, 方红卫, 何国建 等. 细颗粒泥沙净冲刷和输移的大涡模拟研究. 力学学报, 2017,49(1):65-74
    1 ( Bai Jing, Fang Hongwei, He Guojian , et al. Numerical simulation of erosion and transport of fine sediments by large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):65-74 (in Chinese))
    2 Hooke JM . River channel adjustment to meander cutoffs on the River Bollin and River Dane, northwest England. Geomorphology, 1995,14(3):235-253
    3 Leopold LB, Wolman MG . River meanders. Scientific American, 1966,71(6):769-793
    4 沈玉昌 . 河流地貌学概论. 北京: 科学出版社, 1986
    4 ( Shen Yuchang. An Introduction to River Geomorphology. Beijing: Science Press, 1989 (in Chinese))
    5 方红卫, 何国健, 黄磊 等. 生态河流动力学研究的进展与挑战. 水利学报, 2018,50(1):75-87, 96
    5 ( Fang Hongwei, He Guojian, Huang Lei , et al. Progresses and challenges in the study of Eco-fluvial Dynamics. Journal of Hydraulic Engineering, 2018,50(1):75-87, 96 (in Chinese))
    6 Gade HG . Effects of a non-rigid impermeable bottom on plane surface waves in shallow water. Journal of Marine Research, 1958,16:61-82
    7 Dalrymple RA, Liu PL . Waves over soft muds: A two-layer fluid model. Journal of Physical Oceanography, 1978,8(6):1121-1131
    8 Cueva IP . On the response of a muddy bottom to surface water waves. Journal of Hydraulic Research, 1993,31(5):681-696
    9 苏祥龙, 许文祥, 陈文 . 基于分形导数对非牛顿流体层流的数值研究. 力学学报, 2017,49(5):1020-1028
    9 ( Su Xianglong, Xu Wenxiang, Chen Wen . Numerical study for laminar flow of non-newtonian flud based on fractal derivative. Chinese Journal of Theoretical and Applied Mechani, 2017,49(5):1020-1028 (in Chinese))
    10 Nava G, Tie Y, Vitali V , et al. Newtonian to non-Newtonian fluid transition of a model transient network. Soft Matter, 2018,14(7):3288-3295
    11 张培杰, 林建忠 . 非牛顿流体固粒悬浮流的若干问题. 力学学报, 2017,49(3):543-549
    11 ( Zhang Peijie, Lin Jianzhong . Review of some researches on suspension of solid particle in non-Newtonian fluid. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):543-549 (in Chinese))
    12 Pantokratoras A . Flow past a rotating sphere in a non-Newtonian, power-law fluid, up to a Reynolds number of 10000. Chemical Engineering Science, 2018,181(18):311-314
    13 13Datt C, Elfring GJ . Dynamics and rheology of particles in shear-thinning fluids. Journal of Non-Newtonian Fluid Mechanics, 2018,262:107-114
    14 Ng CO, Bai Y . Mass transport in a thin layer of bi-viscous mud under surface waves. China Ocean Engineering, 2002,16(4):423-436
    15 Xu HJ, Bai YC, Li C . Hydro-instability characteristics of Bingham fluid flow as in the Yellow River. Journal of Hydro-environment Research, 2018,20:22-30
    16 牛小静, 余锡平 . 复杂黏弹性流体运动的数值计算方法. 水动力学研究与进展, 2008,23(3):331-337
    16 ( Niu Xiaojing, Yu Xiping . A numerical method for flows of fluids with complex viscoelasticity. Chinese Journal of Hydrodynamics, 2008,23(3):331-337 (in Chinese))
    17 Zhang XY, Ng CO . Mud-wave interaction: A viscoelastic model. China Ocean Engineering, 2006,20(1):15-26
    18 Xia YZ, Zhu KQ . A study of wave attenuation over a Maxwell model of a muddy bottom. Wave Motion, 2010,47(8):601-615
    19 牛小静, 余锡平 . 泥质海床的黏弹塑性模型. 清华大学学报(自然科学版), 2008,48(9):1417-1421
    19 ( Niu Xiaojing, Yu Xiping . Visco-elastic-plastic model for muddy seabeds. Journal of Tsinghua University (Science and Technology), 2008,48(9):1417-1421 (in Chinese))
    20 Rosti ME, Izbassarov D, Tammisola O , et al. Turbulent channel flow of an elastoviscoplastic fluid. Journal of Fluid Mechanics, 2018,853:488-514
    21 Sohbati M, Toumazou C . A two-dimensional experimental numerical approach to investigate wave transformation over muddy beds. Ocean Dynamics, 2015,65(2):295-310
    22 Mei CC, Krotov M, Huang Z , et al. Short and long waves over a muddy seabed. Journal of Fluid Mechanics, 2010,643:33-58
    23 Ng C, Zhang X . Mass transport in water waves over a thin layer of soft viscoelastic mud. Journal of Fluid Mechanics, 2007,573(573):105-130
    24 白玉川, 田琦 . 不同流变模型下的淤泥与波浪相互作用规律. 天津大学学报(自然科学与工程技术版), 2011,44(3):196-201
    24 ( Bai Yuchuan, Tian Qi . Interaction between mud and wave in different rheological models. Journal of Tianjin University (Science and Technology), 2011,44(3):196-201 (in Chinese))
    25 Ng CO . Mass transport in a layer of power-law fluid forced by periodic surface pressure. Wave Motion, 2004,39(3):241-259
    26 Liu J, Bai Y, Xu D . Mass transport in a thin layer of power-law mud under surface waves. Ocean Dynamics, 2017,67(2):237-251
    27 张庆河, 王殿志, 赵子丹 . 扰动淤泥与沉积淤泥的流变特性研究. 水利学报, 2002,33(6):77-82
    27 ( Zhang Qinghe, Wang Dianzhi, Zhao Zidan . Reological properties of man-mixed mud and natural deposited mud. Journal of Hydraulic Engineering, 2002: 33(6):77-82 (in Chinese))
    28 呼和敖德, 黄振华, 张袁备 等. 连云港淤泥流变特性研究. 力学与实践, 1994,16(1):21-24
    28 ( Huhe Aode, Huang Zhenhua, Zhang Yuanbei , et al. Study on rheological characteristics of silt in Lianyungang. Mechanics in Engineering, 1994,16(1):21-24 (in Chinese))
    29 孙献清, 黄建维 . 含盐淤泥的流变特性. 水利水运工程学报, 1988(1):71-77
    29 ( Sun Xianqing, Huang Jianwei . Rheological properties of saline sludge. Hydro-Science and Engineering, 1988(1):71-77 (in Chinese))
    30 费祥俊 . 浆体与粒状物料输送水力学. 北京: 清华大学出版社, 1994.
    30 ( Fei Xiangjun. Transportation Hydraulics of Paste and Granular Materials. Beijing: Tsinghua University Press, 1994 (in Chinese))
    31 Piedra-Cueva I . Drift velocity of spatially decaying waves in a two-layer viscous system. Journal of Fluid Mechanics, 1995,299:217-239
    32 白玉川, 冀自青, 徐海珏 . 摆动河槽水动力稳定性特征分析. 力学学报, 2017,49(2):274-288
    32 ( Bai Yuchuan, Ji Ziqing, Xu Haijue . Hydrodynamic instability characteristics of laminar flow in a meandering channel with moving boundary. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):274-288 (in Chinese))
    33 Sakakiyama T, Bijker EW . Mass transport velocity in mud layer due to progressive waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 1989,115:614-633
  • 期刊类型引用(3)

    1. 温志超,石林平,黄哲,白玉川. 基于泥沙异重流稳定性与衰减过程的床面淤积特性研究. 泥沙研究. 2024(03): 33-40+32 . 百度学术
    2. 陈歆怡,王晓亮,刘青泉,张静. 滚波演化中聚合过程的数值模拟研究. 力学学报. 2021(05): 1457-1470 . 本站查看
    3. 温志超,徐海珏,白玉川. 浑水-浮泥分层流动稳定性判别标准. 水动力学研究与进展(A辑). 2021(02): 252-264 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1392
  • HTML全文浏览量:  286
  • PDF下载量:  108
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-03-26
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回