EI、Scopus 收录
中文核心期刊

自由涡尾迹方法中涡核尺寸对风力机气动计算的影响

许波峰, 刘冰冰, 冯俊恒, 左潞

许波峰, 刘冰冰, 冯俊恒, 左潞. 自由涡尾迹方法中涡核尺寸对风力机气动计算的影响[J]. 力学学报, 2019, 51(5): 1530-1537. DOI: 10.6052/0459-1879-18-440
引用本文: 许波峰, 刘冰冰, 冯俊恒, 左潞. 自由涡尾迹方法中涡核尺寸对风力机气动计算的影响[J]. 力学学报, 2019, 51(5): 1530-1537. DOI: 10.6052/0459-1879-18-440
Xu Bofeng, Liu Bingbing, Feng Junheng, Zuo Lu. INFLUENCE OF VORTEX CORE SIZE ON AERODYNAMIC CALCULATION OF WIND TURBINE IN FREE VORTEX WAKE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1530-1537. DOI: 10.6052/0459-1879-18-440
Citation: Xu Bofeng, Liu Bingbing, Feng Junheng, Zuo Lu. INFLUENCE OF VORTEX CORE SIZE ON AERODYNAMIC CALCULATION OF WIND TURBINE IN FREE VORTEX WAKE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1530-1537. DOI: 10.6052/0459-1879-18-440
许波峰, 刘冰冰, 冯俊恒, 左潞. 自由涡尾迹方法中涡核尺寸对风力机气动计算的影响[J]. 力学学报, 2019, 51(5): 1530-1537. CSTR: 32045.14.0459-1879-18-440
引用本文: 许波峰, 刘冰冰, 冯俊恒, 左潞. 自由涡尾迹方法中涡核尺寸对风力机气动计算的影响[J]. 力学学报, 2019, 51(5): 1530-1537. CSTR: 32045.14.0459-1879-18-440
Xu Bofeng, Liu Bingbing, Feng Junheng, Zuo Lu. INFLUENCE OF VORTEX CORE SIZE ON AERODYNAMIC CALCULATION OF WIND TURBINE IN FREE VORTEX WAKE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1530-1537. CSTR: 32045.14.0459-1879-18-440
Citation: Xu Bofeng, Liu Bingbing, Feng Junheng, Zuo Lu. INFLUENCE OF VORTEX CORE SIZE ON AERODYNAMIC CALCULATION OF WIND TURBINE IN FREE VORTEX WAKE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1530-1537. CSTR: 32045.14.0459-1879-18-440

自由涡尾迹方法中涡核尺寸对风力机气动计算的影响

基金项目: 1) 国家自然科学基金项目资助(51607058)
详细信息
    通讯作者:

    许波峰

  • 中图分类号: O355,TK89

INFLUENCE OF VORTEX CORE SIZE ON AERODYNAMIC CALCULATION OF WIND TURBINE IN FREE VORTEX WAKE METHOD

  • 摘要: 涡核模型中的涡核尺寸对自由涡尾迹(free vortex wake,FVW)方法准确预估风力机气动特性至关重要,涡核尺寸包括初始涡核半径和由于耗散效应涡核半径在尾迹中的增长.FVW方法中涡线控制方程离散采用三步三阶预估校正格式,涡核模型采用经典Lamb-Oseen模型,并考虑了涡耗散效应和拉伸效应.首先,通过气动载荷和叶尖涡涡量平均值的分析得到初始涡核半径的取值范围;然后,根据叶尖涡耗散特性的分析,确定体现涡黏性耗散效应涡核半径增长的经验常数的取值;最后,分析了涡核尺寸对叶尖涡结构的影响,进一步验证初始涡核半径和涡黏性耗散经验常数的取值对风力机气动计算的影响.结果表明:当初始涡核半径大于50%弦长时,FVW方法收敛稳定且能准确预估风轮气动载荷;综合风轮气动载荷和叶尖涡耗散特性,初始涡核半径取60%到70%弦长为宜,且对应的涡黏性耗散经验常数取值也不同;风轮气动载荷和叶尖涡结构的准确预估主要受初始涡核半径影响,经验常数对其影响不大,而经验常数主要影响风轮下游尾流场叶尖涡的耗散特性.
    Abstract: The vortex core size in the vortex core model is very important for the accurate prediction of aerodynamic characteristics of wind turbines by the free vortex wake (FVW) method. The vortex core size includes the initial radius of the vortex core and the radius variation due to the viscous dissipation effect. In the FVW method, to solve the convection equation of the vortex filaments numerically, the three-step and third-order predictor-corrector scheme was used to approximate the derivatives. The classical Lamb-Oseen model was adopted as the vortex core model in which the effects of viscous diffusion and stretching were taken into account. Firstly, the initial radius of the vortex core was determined through the analysis of the airload and the mean value of the tip vortex vorticity. Secondly, the empirical constant that reflects the increase of the vortex core radius was determined based on the tip vortex dissipation characteristics. Finally, the effect of vortex core size on the shape of tip vortex line was analysed to further verify the influence of the initial radius of the vortex core and the empirical constant that reflects the increase of the vortex core radius on aerodynamic calculation of wind turbine. The results show that when the initial vortex core size is greater than 50% of the chord length, the FVW model can produce a stabler convergent wake system and can accurately predict the blade airload. About 60% to 70% of the chord length is recommended as the initial vortex core size in order to take into account both the airload prediction and the wake dissipation characteristics. Different empirical constants of the viscous dissipation effect correspond to different initial vortex core sizes. The blade airload and the wake geometry are mainly affected by the initial vortex core size, rather than the empirical constant of the viscous dissipation effect. However, the empirical constant mainly affects the vortex disspiation characteristics in the downstream wake field.
  • [1] Xu BF, Feng JH, Wang TG , et al. Application of a turbulent vortex core model in the free vortex wake scheme to predict wind turbine aerodynamics. Journal of Renewable and Sustainable Energy, 2018,10(2):023303
    [2] Xu BF, Wang TG, Yuan Y , et al. A simplified free vortex wake model of wind turbines for axial steady conditions. Applied Sciences. 2018,8(6):866
    [3] Su K, Bliss D . A novel hybrid free-wake model for wind turbine performance and wake evolution. Renewable Energy, 2019,131:977-992
    [4] 左潞, 唐植懿, 许波峰 等. 涡模型对风力机气动特性的影响研究. 可再生能源, 2016,34(10):1491-1496
    [4] ( Zuo Lu, Tang Zhiyi, Xu Bofeng , et al. Investigation of effects of vortex models on wind turbine aerodynamic characteristics. Renewable Energy Resources, 2016,34(10):1491-1496 (in Chinese))
    [5] 吕品, 廖明夫, 王四季 等. 基于升力面和全自由涡尾迹的风力机气动模型及其参数影响. 机械设计与制造, 2017,3:52-55
    [5] ( Lü Pin, Liao Mingfu, Wang Siji , et al. Predictions of wind turbine aerodynamics based on lifting surface theory with fully free vortex and the influence of the parameters. Machinery Design and Manufacture, 2017,3:52-55 (in Chinese))
    [6] Vatistas GH, Kozel V, Minh W . A simpler model for concentrated vortices. Experiments in Fluids, 1991,11(1):73-76
    [7] Scully MP . Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. [PhD Thesis]. Cambridge: Massachusetts Institute of Technology, 1975
    [8] Lamb H. Hydrodynamics. Cambridge: Cambridge University Press, 1932
    [9] Xu BF, Wang TG, Yuan Y , et al. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions. Philosophical Transactions of the Royal Society A, 2015,373(2035):20140080
    [10] Tang D, Bao SY, Luo LJ , et al. Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method. Energy, 2017,141:2300-2313
    [11] 张蕴宁, 叶舟, 李春 . 基于改进型升力面自由涡尾迹法的风力机性能研究. 太阳能学报, 2017,38(5):1316-1323
    [11] ( Zhang Yunning, Ye Zhou, Li Chun . Wind turbine aerodynamic performance simulation based on improved lifting surface freewake method. Acta Energiae Solaris Sinica, 2017,38(5):1316-1323 (in Chinese))
    [12] Sant T, del Campo V, Micallef D , et al. Evaluation of the lifting line vortex model approximation for estimating the local blade flow fields in horizontal-axis wind turbines. Journal of Renewable and Sustainable Energy, 2016,8(2):023302
    [13] Gupta S, Leishman JG . Validation of a free vortex wake model for wind turbine in yawed flow//Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, 2006,7:4529-4543
    [14] Yu W , Ferreira CS, van Kuik G, et al. Verifying the blade element momentum method in unsteady,radially varied, axisymmetric loading using a vortex ring model. Wind Energy, 2017,20:269-288
    [15] Basuno B . A prescribed wake model for vertical axis wind turbines. [PhD Thesis]. Glasgow: University of Glasgow, 1992
    [16] Landahl MT . Roll-up model for rotor wake vortices. ASRL-TR-194-4, Massachusetts Institute of Technology, 1981
    [17] Miller RH . Methods for rotor aerodynamic and dynamic analysis. Progress in Aerospace Sciences, 1985,22(2):113-160
    [18] Dobrev I, Maalouf B, Troldborg N , et al. Investigation of the wind turbine vortex structure//14th Int Symp on Applications of the Laser Techniques to Fluid Mechanics, Lisbon, 2008
    [19] Bhagwat MJ, Leishman JG . Correlation of helicopter tip vortex measurements. AIAA Journal, 2000,38(2):301-308
    [20] Bhagwat MJ, Leishman JG . Generalized viscous vortex core models for application to free-vortex wake and aeroacoustic calculations. American Helicopter Society 58th Annual National Forum Proceedings, Montreal,Canada, June 11-13, 2002
    [21] 林孟达, 崔桂香, 张兆顺 等. 飞机尾涡演变及快速预测的大涡模拟研究. 力学学报, 2017,49(6):1185-1200
    [21] ( Lin Mengda, Cui Guixiang, Zhang Zhaoshun , et al. Large eddy simulation and rapid prediction of aircraft tail vortex Evolution. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1185-1200 (in Chinese))
    [22] Gupta S . Development of a time-accutate viscous lagrangian vortex wake model for wind turbine application. [PhD thesis]. Maryland: University of Maryland, 2006
    [23] Chkir S . Unsteady loads evaluation for a wind turbine rotor using free wake method. Energy Procedia, 2011,6:777-785
    [24] Bhagwat M, Leishman JG . Stability, consistency and convergence of time marching free-vortex rotor wake algorithms. Journal of the American Helicopter Society, 2001,46(1):59-71
    [25] Gupta S, Leishman JG . Accuracy of the induced velocity from helicoidal vortices using straight-line segmentation. AIAA Journal, 2005,43(1):29-40
    [26] Elgammi M, Sant T . A new stall delay algorithm for predicting the aerodynamics loads on wind turbine blades for axial and yawed conditions. Wind Energy, 2017,20:1645-1663
    [27] 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765
    [27] ( Li Guoqiang, Zhang Weiguo, Chen Li , et al. Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):751-765(in Chinese))
    [28] Li Y, Calisal SM . A discrete vortex method for simulating a stand-alone tidal current turbine: Modeling and validation. Journal of Offshore Mechanics and Arctic Engineering, 2010,132(3):1102-1110
    [29] Ananthan S, Leishman JG, Ramasamy M . The role of filament stretching in the free-vortex modeling of rotor wakes. Journal of the American Helicopter Society, 2004,49(2):176-191
    [30] Hand MM, Simms DA, Fingersh LJ , et al. Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaign. Technical Report NREL/TP-500-29955, National Renewable Energy Laboratory, Golden, 2001
    [31] 高天达, 孙姣, 范赢 等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110
    [31] ( Gao Tianda, Sun Jiao, Fan Ying , et al. Analysis of particle behavior in turbulent boundary layer based on PIV technique. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110(in Chinese))
    [32] Xiao JP, Wu J, Chen L , et al. Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics, 2011,32(6):729-73
    [33] Simms D, Schreck S, Hand M , et al. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: A comparison of predictions to measurements. NREL/TP--500-29494, National Renewable Energy Laboratory, Golden, 2001
  • 期刊类型引用(3)

    1. 吕文春,马剑龙,陈雅男,李佩林,东雪青. 基于高频PIV的风力机叶尖涡初始涡量值演变规律研究. 中国测试. 2023(08): 162-168 . 百度学术
    2. 冯国英,张守斌. 考虑动态失速与风轮支架损失的H型垂直轴风力机自由尾迹模型构建. 太阳能学报. 2022(06): 169-175 . 百度学术
    3. 许波峰,朱紫璇,戴成军,蔡新,王同光,赵振宙. 风剪切对风力机叶片气动性能及尾迹形状的影响. 力学学报. 2021(02): 362-372 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1868
  • HTML全文浏览量:  268
  • PDF下载量:  151
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-12-19
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回