EI、Scopus 收录
中文核心期刊

对角受拉方膜褶皱变形幅值的理论预测及实验验证

曹进军, 张卉婷, 张亮, 彭福军, 恽卫东

曹进军, 张卉婷, 张亮, 彭福军, 恽卫东. 对角受拉方膜褶皱变形幅值的理论预测及实验验证[J]. 力学学报, 2019, 51(5): 1403-1410. DOI: 10.6052/0459-1879-19-109
引用本文: 曹进军, 张卉婷, 张亮, 彭福军, 恽卫东. 对角受拉方膜褶皱变形幅值的理论预测及实验验证[J]. 力学学报, 2019, 51(5): 1403-1410. DOI: 10.6052/0459-1879-19-109
Cao Jinjun, Zhang Huiting, Zhang Liang, Peng Fujun, Yun Weidong. THEORETICAL PREDICTION AND EXPERIMENTAL VERIFICATION OF WRINKLE AMPLITUDE IN A SQUARE MEMBRANE SUBJECTED TO DIAGONAL TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1403-1410. DOI: 10.6052/0459-1879-19-109
Citation: Cao Jinjun, Zhang Huiting, Zhang Liang, Peng Fujun, Yun Weidong. THEORETICAL PREDICTION AND EXPERIMENTAL VERIFICATION OF WRINKLE AMPLITUDE IN A SQUARE MEMBRANE SUBJECTED TO DIAGONAL TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1403-1410. DOI: 10.6052/0459-1879-19-109
曹进军, 张卉婷, 张亮, 彭福军, 恽卫东. 对角受拉方膜褶皱变形幅值的理论预测及实验验证[J]. 力学学报, 2019, 51(5): 1403-1410. CSTR: 32045.14.0459-1879-19-109
引用本文: 曹进军, 张卉婷, 张亮, 彭福军, 恽卫东. 对角受拉方膜褶皱变形幅值的理论预测及实验验证[J]. 力学学报, 2019, 51(5): 1403-1410. CSTR: 32045.14.0459-1879-19-109
Cao Jinjun, Zhang Huiting, Zhang Liang, Peng Fujun, Yun Weidong. THEORETICAL PREDICTION AND EXPERIMENTAL VERIFICATION OF WRINKLE AMPLITUDE IN A SQUARE MEMBRANE SUBJECTED TO DIAGONAL TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1403-1410. CSTR: 32045.14.0459-1879-19-109
Citation: Cao Jinjun, Zhang Huiting, Zhang Liang, Peng Fujun, Yun Weidong. THEORETICAL PREDICTION AND EXPERIMENTAL VERIFICATION OF WRINKLE AMPLITUDE IN A SQUARE MEMBRANE SUBJECTED TO DIAGONAL TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1403-1410. CSTR: 32045.14.0459-1879-19-109

对角受拉方膜褶皱变形幅值的理论预测及实验验证

基金项目: 1) 国家自然科学基金项目;上海航天科技创新基金项目(SAST2017-022);重庆市基础研究与前沿探索项目(cstc2016jcyjA0058);中央高校基本科研业务费前沿交叉项目资助(2019CDQYHK039)
详细信息
    通讯作者:

    张亮

  • 中图分类号: TU311.2

THEORETICAL PREDICTION AND EXPERIMENTAL VERIFICATION OF WRINKLE AMPLITUDE IN A SQUARE MEMBRANE SUBJECTED TO DIAGONAL TENSION

  • 摘要: 柔性薄膜结构广泛应用于航天飞行器的关键部件.形面平整度是影响薄膜结构性能的主要因素之一.褶皱幅值是评价薄膜反射面天线形面平整度的重要指标.褶皱幅值的大小与垂直于褶皱方向的横向应变密切相关.本文基于薄板稳定性理论,针对对角受拉方形薄膜建立了一个能够准确预测其褶皱变形幅值的理论模型.该模型考虑了横向拉伸力对薄膜变形的影响,将垂直于褶皱方向的位移分解为由泊松效应造成的横向收缩位移、由面外变形造成的褶皱位移以及由横向拉伸力造成的拉伸位移三个部分,重新推导了褶皱幅值的理论公式. 基于数字图像相关技术,对受拉方形薄膜进行了散斑实验测试. 利用双目视觉三维测量系统,测量了方形薄膜的三维位移场, 获得了薄膜的三维变形形貌和褶皱波形图,研究了褶皱幅值与拉伸载荷之间的非线性关系. 与已有理论模型相比,该模型进一步提高了褶皱幅值的计算精度, 与实验结果吻合良好.本文呈现的理论研究可为精确数值模型的建立及算法实现提供有意义的指导.
    Abstract: Flexible membrane structures are widely used in the key parts of aerospace vehicles. Surface flatness is one of the main factors affecting the performances of membrane structures. Wrinkle amplitude is an important factor for evaluating the surface flatness of membrane reflector antennas. Wrinkle amplitude is strongly related with the transverse strain, perpendicular to wrinkling direction. Based on the stability theory of thin plates, a theoretical model is proposed to predict the wrinkle amplitude in a square membrane subjected to diagonal tension. The effect of transverse tensile force on the membrane deformation is taken into account. The displacement perpendicular to wrinkling direction is decomposed into three parts: the transverse displacement induced by Poisson's effect, the wrinkling displacement induced by out-of-plane deformation, and the tensile displacement induced by transverse tensile force. The formulation of wrinkle amplitude is reworked. Based on digital image correlation (DIC) technology, speckle experiment is carried out for a square membrane subjected to diagonal tension. The three-dimensional displacement of square membrane is measured by the binocular vision three-dimensional measurement system. The three-dimensional deformed shapes and wrinkle waveforms of membrane are obtained. We study the nonlinear relationship between wrinkle amplitudes and tensile loads. Compared with an existing model, our model greatly improves the accuracy of prediction to wrinkle amplitude, which is in good agreement with experimental results. The theoretical research presented in this paper can provide valuable guidance for the establishment of a fine numerical model and the implementation of algorithm.
  • [1] 刘惠祥, 何国毅, 王琦 . 蜻蜓滑翔时柔性褶皱前翅气动特性分析. 力学学报, 2019,51(1):94-102
    [1] ( Liu Huixiang, He Guoyi, Wang Qi . Numerical study on the aerodynamic performance of the flexible and corrugated forewing of dragonfly in gilding flight. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):94-102 (in Chinese))
    [2] Li B, Cao YP, Feng XQ , et al. Surface wrinkling of mucosa induced by volumetric growth: Theory, simulation and experiment. Journal of Mechanics and Physics of Solids, 2011,59(4):758-774
    [3] Zhang C, Li B, Huang X , et al. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth. Applied Physics Letters, 2016,109:143701
    [4] Peng ZL, Yang YZ, Chen SH . Coupled effects of the temperature and the relative humidity on gecko adhesion. Journal of Physics D : Applied Physics, 2017,50:315402
    [5] 胡海岩 . 太阳帆航天器的关键技术. 深空探测学报, 2016,3(4):334-344
    [5] ( Hu Haiyan . Key technologies of solar sail spacecraft. Journal of Deep Space Exploration, 2016,3(4):334-344 (in Chinese))
    [6] Lian PY, Duan BY, Wang W , et al. A pattern approximation method for distorted reflector antennas using piecewise linear fitting of the exponential error term. IEEE Transactions on Antennas and Propagation, 2015,63(10):4546-4551
    [7] Geppert U, Biering B, Lura F , et al. The 3-step DLR-ESA gossamer road to solar sailing. Advances in Space Research, 2011,48:1695-1701
    [8] 谢超, 严飙, 刘钰 等. 大型星载薄膜天线高精度制造技术研究. 载人航天, 2018,24(1):79-83
    [8] ( Xie Chao, Yan Biao, Liu Yu , et al. High precision manufacturing technology for space-based membrane antennas. Manned Spaceflight, 2018,24(1):79-83 (in Chinese))
    [9] Mansfield EH . Tension field theory a new approach which shows its duality with inextensional theory. Proceedings of the 12th International Congress Applied Mechanics, 1968, 305-320
    [10] Steigmann DJ . Tension field theory. Proceedings of the Royal Society of London Part A, 1990,429(1867):141-173
    [11] 李云良, 田振辉, 谭惠丰 . 基于张力场理论的薄膜褶皱研究评述. 力学与实践, 2008,30(4):8-14
    [11] ( Li Yunliang, Tian Zhenhui, Tan Huifeng . Review of methods of wrinkle studies based on tension field theory. Mechanics in Engineering, 2008,30(4):8-14 (in Chinese))
    [12] Stein M, Hedgepeth JM. Analysis of partly wrinkled membranes. NASA, Tech Note , 1961, D-813
    [13] Pipkin AC . Relaxed energy density for isotropic elastic membranes. IMA Journal of Applied Mathematics, 1986,36:85-99
    [14] Roddeman DG, Drukker J, Oomens CW , et al. The wrinkling of thin membrane part I: Theory. Journal of Applied Mechanics, 1987,54:884-887
    [15] Zhang L, Gao Q, Zhang HW . Analysis of 2-D bimodular materials and wrinkled membranes based on the parametric variational principle and co-rotational approach. International Journal for Numerical Methods in Engineering, 2014,98(10):721-746
    [16] Du ZL, Zhang YP, Zhang WS , et al. A new computational framework for materials with different mechanical responses in tension and compression and its applications. International Journal of Solids and Structures, 2016,100(1):54-73
    [17] Shi JB, Liu ZY, Hong ZY . Multibody dynamic analysis using a rotation-free shell element with corotational frame. Acta Mechanica Sinica, 2018,34(4):769-780
    [18] 冯西桥, 曹艳平, 李博 . 软材料表面失稳力学. 北京: 科学出版社, 2017
    [18] ( Feng Xiqiao, Cao Yanping, Li Bo. Surface Wrinkling Mechanics of Soft Materials. Beijing: Science Press, 2017 (in Chinese))
    [19] 李博 . 软物质材料的表面失稳研究. [博士论文]. 北京:清华大学, 2011: 15-32
    [19] ( Li Bo . Studies on surface instability of soft matters. [PhD Thesis]. Beijing: Tsinghua University, 2011: 15-32 (in Chinese))
    [20] 黄春阳, 唐山, 彭向和 . 超弹性薄膜与可压缩基底双层结构表面失稳分析. 力学学报, 2017,49(4):758-762
    [20] ( Huang Chunyang, Tang Shan, Peng Xianghe . Study of surface instability about hyperelastic films on auxetic substrates under compression. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):758-762 (in Chinese))
    [21] Cerda E, Ravi CK, Mahadevan L . Wrinkling of an elastic sheet under tension. Nature, 2002,419:579-580
    [22] Cerda E, Mahadevan L . Geometry and physics of wrinkling. Physical Review Letters, 2003,90(7):1-4
    [23] Wong YW, Pellegrino S . Wrinkled membranes part II: Analytical models. Journal of Mechanics of Materials and Structures, 2006,1(1):24-59
    [24] 王长国 . 空间薄膜结构皱曲行为与特性研究. [博士论文]. 哈尔滨:哈尔滨工业大学, 2007: 85-96
    [24] ( Wang Changguo . Study on wrinkling behavior and characteristic of space membrane. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2007: 85-96 (in Chinese))
    [25] Wang CG, Du XW, Wan ZM . An experimental study on wrinkling behaviors and characteristics of gossamer space structures. Strain, 2007,43:332-339
    [26] Lan L, Wang CG, Tan HF . Experiment and evaluation of wrinkling strain in a corner tensioned square membrane. Acta Mechanica Sinica, 2014,30(3):430-436
    [27] Liu YP, Guo K, Wang CG , et al. Wrinkling and ratcheting of a thin film on cyclically deforming plastic substrate: mechanical instability of the solid-electrolyte interphase in Li-ion batteries. Journal of the Mechanics and Physics of Solids, 2019,123:103-118
    [28] 马瑞, 杨庆山, 王晓峰 . 基于稳定理论的剪切薄膜屈曲分析. 力学学报, 2014,46(1):114-119
    [28] ( Ma Rui, Yang Qingshan, Wang Xiaofeng . Chinese Journal of Theoretical and Applied Mechanics, 2014,46(1):114-119 (in Chinese))
    [29] Yang YF, Dai HH, Xu F , et al. Pattern transitions in a soft cylindrical shell. Physical Review Letters, 2018,120:215503
    [30] Fu C, Wang T, Xu F , et al. A modeling and resolution framework for wrinkling in hyperelastic sheets at finite membrane strain. Journal of the Mechanics and Physics of Solids, 2019,124:446-470
    [31] Taylor M, Bertoldi K, Steigmann DJ . Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain. Journal of the Mechanics and Physics of Solids, 2014,62:163-180
    [32] Taylor M, Davidovitch B, Qiu ZL , et al. A comparative analysis of numerical approaches to the mechanics of elastic sheets. Journal of the Mechanics and Physics of Solids, 2015,79:92-107
    [33] 王长国, 杜星文, 赫晓东 . 空间充气薄膜结构的褶皱分析. 力学学报, 2008,40(3):331-338
    [33] ( Wang Changguo, Du Xingwen, He Xiaodong . Wrinkling analysis of space inflatable membrane structures. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(3):331-338 (in Chinese))
    [34] 徐芝纶. 弹性力学(下册)( 第五版 ) . 北京:高等教育出版社, 2016
    [34] ( Xu Zhilun. Elasticity (Vol. 2) (The fifth edition). Beijing: Higher Education Press, 2016 (in Chinese))
    [35] Calladine CR. Theory of Shell Structures. Cambridge: Cambridge University Press, 1983
    [36] Luo PF, Chao YJ, Sutton MA , et al. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Experimental Mechanics, 1993,33(2):123-132
  • 期刊类型引用(5)

    1. 赵振宇,曾昱嘉,张贤鹏. 柔性屏幕褶皱分析及无褶皱设计. 应用力学学报. 2024(06): 1343-1349 . 百度学术
    2. 张静,陈延峥,许文轩,王旭飞,刘荣强,寇子明. 拉伸作用下薄膜褶皱影响因素数值分析. 工程科学与技术. 2023(05): 191-201 . 百度学术
    3. 宋广凯,孙博华. 易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌. 力学学报. 2021(02): 448-466 . 本站查看
    4. 徐凡,杨易凡,汪婷. 曲面薄膜结构褶皱失稳力学. 力学进展. 2021(02): 342-363 . 百度学术
    5. 徐凡,汪婷,杨易凡. 薄膜拉伸褶皱失稳力学进展. 力学季刊. 2020(02): 207-220 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  1589
  • HTML全文浏览量:  320
  • PDF下载量:  158
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-04-26
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回