EI、Scopus 收录
中文核心期刊

基于频率和模态保证准则的结构内部多缺陷反演

江守燕, 赵林鑫, 杜成斌

江守燕, 赵林鑫, 杜成斌. 基于频率和模态保证准则的结构内部多缺陷反演[J]. 力学学报, 2019, 51(4): 1091-1100. DOI: 10.6052/0459-1879-19-078
引用本文: 江守燕, 赵林鑫, 杜成斌. 基于频率和模态保证准则的结构内部多缺陷反演[J]. 力学学报, 2019, 51(4): 1091-1100. DOI: 10.6052/0459-1879-19-078
Jiang Shouyan, Zhao Linxin, Du Chengbin. IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1091-1100. DOI: 10.6052/0459-1879-19-078
Citation: Jiang Shouyan, Zhao Linxin, Du Chengbin. IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1091-1100. DOI: 10.6052/0459-1879-19-078
江守燕, 赵林鑫, 杜成斌. 基于频率和模态保证准则的结构内部多缺陷反演[J]. 力学学报, 2019, 51(4): 1091-1100. CSTR: 32045.14.0459-1879-19-078
引用本文: 江守燕, 赵林鑫, 杜成斌. 基于频率和模态保证准则的结构内部多缺陷反演[J]. 力学学报, 2019, 51(4): 1091-1100. CSTR: 32045.14.0459-1879-19-078
Jiang Shouyan, Zhao Linxin, Du Chengbin. IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1091-1100. CSTR: 32045.14.0459-1879-19-078
Citation: Jiang Shouyan, Zhao Linxin, Du Chengbin. IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1091-1100. CSTR: 32045.14.0459-1879-19-078

基于频率和模态保证准则的结构内部多缺陷反演

基金项目: 1) 国家自然科学基金(51579084);中央高校基本科研业务费专项资金(2019B16314);中央高校基本科研业务费专项资金(2018B48514);浙江省水利科技重点项目(RB1703)
详细信息
    通讯作者:

    江守燕

  • 中图分类号: TB115

IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA

  • 摘要: 静响应(位移、应变等)在实际问题的反演分析中很难由安装在结构上的一组传感器记录得到,而结构的动力特性(频率、振型)和 动力响应(加速度、速度、动位移)在实际问题中较易通过传感器采集得到. 文中基于频率残差和模态保证准则构建了反演分析模型的目标函数,并结合频域内动力扩展有限元法和人工蜂群智能优化算法 的优点,扩展有限元法通过引入非连续位移模式在不重新划分网格的情况下通过改变水平集函数反映缺陷的数量、位置及大小, 避免了反演分析每次迭代过程中的网格重剖分,人工蜂群智能优化算法在每次迭代中都采用全局和局部搜索,找到最优解的概 率大幅增大并可很好地避免局部最优,同时,通过引入拓扑变量,将缺陷的数量纳入到反演分析过程中,迭代过程中可智能反演出缺陷的数目,建立了结构内部多缺陷(孔洞、裂纹)的反演分析模型. 通过若干算例的分析表明:建立的反演分析模型能够较为准确地探测出结构内部圆形、椭圆形以及裂纹状缺陷的数量、位置及大小,且算法具有较好的鲁棒性.
    Abstract: Static response (displacement, strain, etc.) can hardly be recorded by a group of sensors installed on the structure in the inversion analysis of practical problems, while the dynamic characteristics (frequency, mode) and dynamic response (acceleration, velocity, dynamic displacement) of the structure can be easily acquired by sensors in practical problems. In this paper, the objective function of the inversion analysis model is constructed based on frequency residuals and modal assurance criteria. Combining the advantages of dynamic extended finite element method in frequency domain and artificial bee colony intelligent optimization algorithm, the extended finite element method avoids re-meshing in each iteration by introducing discontinuous displacement approximation and can reflect the number, location and size of defects by changing the level set function. In each iteration, the artificial bee colony intelligent optimization algorithm uses global and local searches. The probability of finding the optimal solution increases greatly and avoids local optimum. At the same time, by introducing topological variables, the number of flaws is incorporated into the inversion analysis process. The number of flaws can be intelligently inverted in the iteration process. Then, the inversion analysis model of multiple flaws (voids, cracks) in the structure is established. The analysis of several examples shows that the inversion analysis model can accurately detect the number, location and size of circular flaws, elliptical flaws, or crack in the structure. The result also shows the good robustness of the algorithm.
  • [1] Ortiz M, Pandolfi A . Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999,44(9):1267-1282
    [2] Nishioka T, Tokudome H, Kinoshita M . Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation. International Journal of Solids and Structures, 2001,38:5273-5301
    [3] Bouchard PO, Bay F, Chastel Y . Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria. Computer Methods in Applied Mechanics & Engineering, 2003,192:3887-3908
    [4] Belytschko T, Lu YY, Gu L . Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994,37:229-256
    [5] Rabczuk T, Belytschko T . Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2014,61:2316-2343
    [6] Rabczuk T, Areias PMA, Belytschko T . A simplified mesh-free method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007,69:993-1021
    [7] Ai WL, Augarde CE . An adaptive cracking particle method for 2D crack propagation. International Journal for Numerical Methods in Engineering, 2016,108(2):1626-1648
    [8] 江守燕, 李云, 杜成斌 . 改进型扩展比例边界有限元法. 力学学报, 2019,51(1):278-288
    [8] ( Jiang Shouyan, Li Yun, Du Chengbin . Improved extended scaled boundary finite element methods. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(61):278-288 (in Chinese))
    [9] 陈楷, 邹德高, 孔宪京 等. 多边形比例边界有限单元非线性化方法及应用. 浙江大学学报(工学版), 2017,51(10):1996-2004
    [9] ( Chen Kai, Zou Degao, Kong Xianjing , et al. Novel nonlinear polygon scaled boundary finite element method and its application. Journal of Zhejiang University (Engineering Science), 2017,51(10):1996-2004 (in Chinese))
    [10] 章鹏, 杜成斌, 江守燕 . 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017,49(6):1335-1347
    [10] ( Zhang Peng, Du Chengbin, Jiang Shouyan . Crack face contact problem analysis using the scaled boundary finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1335-1347(in Chinese))
    [11] 钟红, 暴艳利, 林皋 . 基于多边形比例边界有限元的重力坝裂缝扩展过程模拟. 水利学报, 2014,45(S1):30-37
    [11] ( Zhong Hong, Bao Yanli, Lin Gao . Modelling of crack propagation of gravity dams based on scaled boundary polygons. Journal of Hydraulic Engineering, 2014,45(S1):30-37 (in Chinese))
    [12] 徐栋栋, 郑宏, 杨永涛 等. 多裂纹扩展的数值流形法. 力学学报, 2015,47(3):471-481
    [12] ( Xu Dongdong, Zheng Hong, Yang Yongtao . Multiple crack propagation based on the numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):471-481 (in Chinese))
    [13] 杨永涛, 徐栋栋, 郑宏 . 动载下裂纹应力强度因子计算的数值流形元法. 力学学报, 2014,46(5):730-738
    [13] ( Yang Yongtao, Xu Dongdong, Zheng Hong . Evaluation on stress intensity factor of crack under dynamic load using numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(5):730-738 (in Chinese))
    [14] 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610
    [14] ( Wen Longfei, Wang Lixiang, Tian Rong . Accrate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))
    [15] 刘学聪, 章青, 夏晓舟 . 一种新型裂尖加强函数的显式动态扩展有限元法. 工程力学, 2017,34(10):10-18
    [15] ( Liu Xuecong, Zhang Qing, Xia Xiaozhou . A new enrichment function of crack tip in XFEM dynamics by explicit time algorithm. Engineering Mechanics, 2017,34(10):10-18 (in Chinese))
    [16] Osher S, Sethian JA . Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988,79(1):12-49
    [17] Rabinovich D, Givoli D, Vigdergauz S . Crack identification by 'arrival time' using XFEM and a genetic algorithm. International Journal for Numerical Methods in Engineering, 2009,77(3):337-359
    [18] Waisman H, Chatzi E, Smyth AW . Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. International Journal for Numerical Methods in Engineering, 2010,82(3):303-328
    [19] Chatzi EN, Hiriyur B, Waisman H , et al. Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures. Computers & Structures, 2011,89(7-8):556-570
    [20] Nanthakumar SS, Lahmer T, Rabczuk T . Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013,96:373-389
    [21] Sun H, Waisman H, Betti R . A multiscale flaw detection algorithm based on XFEM. International Journal for Numerical Methods in Engineering, 2014,100:477-503
    [22] 江守燕, 杜成斌 . 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型. 力学学报, 2015,47(6):1037-1045
    [22] ( Jiang Shouyan, Du Chengbin . Numerical model for identification of internal defect or inclusion based on extended finite elememt methods. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):1037-1045 (in Chinese))
    [23] Zhao W, Du C, Jiang S . An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm. Computer Methods in Applied Mechanics & Engineering, 2018,339:341-357
    [24] Ma C, Yu T, Van Lich L , et al. An effective computational approach based on XFEM and a novel three-step detection algorithm for multiple complex flaw clusters. Computers & Structures, 2017,193:207-225
    [25] Jung J, Jeong C, Taciroglu E . Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM. Computer Methods in Applied Mechanics & Engineering, 2013,259:50-63
    [26] Zhang C, Nanthakumar SS, Lahmer T , et al. Multiple cracks identification for piezoelectric structures. International Journal of Fracture, 2017,206(2):151-169
    [27] Zhang C, Wang C, Lahmer T , et al. A dynamic XFEM formulation for crack identification. International Journal of Mechanics & Materials in Design, 2016,12:427-448
    [28] 朱宏平, 余璟, 张俊兵 . 结构损伤动力检测与健康监测研究现状与展望. 工程力学, 2011,28(2):1-11
    [28] ( Zhu Hongping, Yu Jing, Zhang Junbing . A summary review and advantages of vibration-based damage identification methods in structural health monitoring. Engineering Mechanics, 2011,28(2):1-11 (in Chinese))
    [29] Wahalathantri BL, Thambiratnam DP, Chan THT , et al. Vibration based baseline updating method to localize crack formation and propagation in reinforced concrete members. Journal of Sound & Vibration, 2015,344:258-276
    [30] Bui QB, Mommessin M, Perrotin P , et al. Assessing local-scale damage in reinforced concrete frame structures using dynamic measurements. Engineering Structures, 2014,79:22-31
    [31] Wu AL, Yang JN, Loh CH . A finite-element based damage detection technique for nonlinear reinforced concrete structures. Structural Control and Health Monitoring, 2015,22:1223-1239
    [32] Pesic N, Zivanovic S, Dennis J , et al. Experimental and finite element dynamic analysis of incrementally loaded reinforced concrete structures. Engineering Structures, 2015,103:15-27
    [33] Stolarska M, Chopp DL, Mo?s N , et al. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 2001,51:943-960
    [34] 江守燕, 杜成斌 . 动载下缝端应力强度因子计算的扩展有限元法. 应用数学和力学, 2013,34(6):586-597
    [34] ( Jiang Shouyan, Du Chengbin . Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods. Applied Mathematics and Mechanics, 2013,34(6):586-597 (in Chinese))
  • 期刊类型引用(8)

    1. 叶玲,江宏康,陈华鹏,冯宇轩,王力骋. 基于多链竞争差分进化算法的无砟轨道结构有限元模型修正. 交通运输工程学报. 2024(02): 112-124 . 百度学术
    2. 江守燕,邓王涛,孙立国,杜成斌. 数据驱动的半无限介质裂纹识别模型研究. 力学学报. 2024(06): 1727-1739 . 本站查看
    3. 江守燕,杜成斌,孙立国. 基于数据驱动的大体积结构裂缝深度反演. 工程力学. 2023(04): 215-225 . 百度学术
    4. 沈学港,江守燕,储冬冬. 基于动力XFEM的结构内多缺陷三步反演法. 力学与实践. 2023(02): 379-388 . 百度学术
    5. 阳洋,凌园,高志豪,沈琪雯. 高耸类结构抗侧刚度突变位置统计矩比值检测方法研究. 仪器仪表学报. 2023(04): 271-283 . 百度学术
    6. 付君健,彭铁川,李然,李帅虎,周祥曼,李响. 考虑刚度和质量耦合效应的结构弹性成像方法. 力学学报. 2023(09): 1971-1982 . 本站查看
    7. 赵林鑫,江守燕,杜成斌. 基于SBFEM和机器学习的薄板结构缺陷反演. 工程力学. 2021(06): 36-46 . 百度学术
    8. 江守燕,万晨,孙立国,杜成斌. 基于SBFEM和深度学习的裂纹状缺陷反演模型. 力学学报. 2021(10): 2724-2735 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1457
  • HTML全文浏览量:  268
  • PDF下载量:  104
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-03-30
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回