EI、Scopus 收录
中文核心期刊

一种基于几何重构的Youngs-VOF耦合水平集追踪方法

AN INTERFACE TRACKING METHOD OF COUPLED YOUNGS-VOF AND LEVEL SET BASED ON GEOMETRIC RECONSTRUCTION

  • 摘要: 针对界面追踪方法中拉格朗日方法和欧拉--拉格朗日方法计算效率低、不适用大变形、不能应用于三维数值计算模型等问题,研究了一种效率高、界面清晰、适用于三维模型的计算气液两相界面迁移特性的欧拉运动界面追踪方法,该方法将"米"状相邻单元Youngs方法用于运动界面重构,将Youngs-VOF和水平集通过几何方法耦合,提高运动界面精度,克服了VOF和水平集方法存在的缺陷,避免了利用高阶导数本身的稳定性去求解水平集对流方程和距离函数方程."米"状相邻单元Youngs方法避免了数值耗散、数值色散性以及非线性效应引起的捕捉界面模糊的情况.Youngs-VOF耦合水平集方法既保证了计算界面时的稳定性,与拉格朗日方法相比又提高了计算效率.利用Youngs-VOF耦合水平集方法与VOF方法对单个气泡在水中上升过程数值计算与实验对比并对经典剪切流场中圆形运动界面模型的数值计算,验证了Youngs-VOF耦合水平集方法的有效性并比VOF方法捕捉界面更清晰、锐利;通过对溃坝--自由表面流动过程数值计算并与实验进行对比,验证了Youngs-VOF耦合水平集方法的稳定性以及对三维数值模型的适用性.

     

    Abstract: Abstract The Lagrangian method and the Euler-Lagrangian method in the interface tracking method have low computational efficiency. They are not suitable for large deformation, and can not be applied to three-dimensional numerical calculation models. An Euler motion interface tracking method is applied to calculate the migration characteristics of gas-liquid two-phase interface with high efficiency and clear interface and suitable for three-dimensional models. This method uses the "米" shaped adjacent grid Youngs method for interface reconstruction. The Youngs-VOF and level set are coupled by geometric methods, so it can improve the accuracy of the interface, and overcome the defects of the VOF method and level set method, and avoid to solve the level set convection equation and the distance function equation with its own stability of the high-order derivation. The "米" shaped adjacent grid Youngs method is used to avoid the situation that the captured interface was blurred due to numerical dissipation and numerical dispersion, as well as nonlinear effects. The Youngs-VOF coupled level set method not only ensures the stability of the computing interface, but improves the computational efficiency compared with the Lagrangian method. The Youngs-VOF coupled level set method and VOF method is designed to simulate the rising process of a single bubble in water. After compared, the Youngs-VOF coupled level set method is more efficient and sharper than the VOF method. By using the Youngs-VOF coupled level set method and the VOF method to numerically calculate the circular motion interface model in the classical shear flow field, it is verified that the Youngs-VOF coupled level set method can better calculate the interface curvature compared with the VOF method. Through the numerical calculation of the break dam-free surface flow process and compared with the experiment, the stability of the Youngs-VOF coupled level set method are verified. And the Youngs-VOF coupled level set method can be applied to the three-dimensional numerical models.

     

/

返回文章
返回