EI、Scopus 收录
中文核心期刊

一种新的橡胶材料弹性本构模型

魏志刚, 陈海波

魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型[J]. 力学学报, 2019, 51(2): 473-483. DOI: 10.6052/0459-1879-18-303
引用本文: 魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型[J]. 力学学报, 2019, 51(2): 473-483. DOI: 10.6052/0459-1879-18-303
Zhigang Wei, Haibo Chen. A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483. DOI: 10.6052/0459-1879-18-303
Citation: Zhigang Wei, Haibo Chen. A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483. DOI: 10.6052/0459-1879-18-303
魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型[J]. 力学学报, 2019, 51(2): 473-483. CSTR: 32045.14.0459-1879-18-303
引用本文: 魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型[J]. 力学学报, 2019, 51(2): 473-483. CSTR: 32045.14.0459-1879-18-303
Zhigang Wei, Haibo Chen. A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483. CSTR: 32045.14.0459-1879-18-303
Citation: Zhigang Wei, Haibo Chen. A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483. CSTR: 32045.14.0459-1879-18-303

一种新的橡胶材料弹性本构模型

基金项目: 国家自然科学基金(11772322);中国科学院战略性先导科技专项(B类)子课题(XDB22040502);安徽省教育厅高等学校自然科学研究(KJ2017A051)
详细信息
    作者简介:

    2) 魏志刚,副教授,研究方向:橡胶材料本构建模. E-mail: zhigwei@163.com

  • 中图分类号: TB535.1

A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS

  • 摘要: 橡胶类材料本构关系对于科学研究和工程应用具有重要意义,但已有的橡胶模型的拟合能力和可靠性需要进一步提高.为解决此问题,本文提出了一种新的橡胶材料的各向同性、不可压缩柯西弹性模型.研究了橡胶材料本构关系的模型形式,基于平面应力变形状态,提出了一种以较大的两个伸长率为自变量、适用于一般变形状态的橡胶材料弹性本构模型形式;研究了橡胶材料在侧面受约束条件下的变形规律,分析了橡胶材料本构关系需要满足的约束条件;在此基础上,结合一个可以通过实验确定的描述平面拉伸变形状态下的橡胶材料力学特性函数,提出一种将该函数拓展为平面应力状态一般模型的方法,并给出了一个具体的函数形式,形成了一个新的不可压缩、各向同性的橡胶材料弹性本构模型.使用5组包含3种类型实验的数据和一组较全面的双轴测试数据对该模型进行了参数拟合,结果表明:该模型具有很好的拟合精度和更高的可靠性,仅用一种类型实验数据,如单轴拉伸或者平面拉伸等,也能获得较好的拟合结果.
    Abstract: The constitutive relation of rubber-like materials is important for scientific study and engineering application. However, the fitting ability and reliability of the existing models don't satisfy the requirement. To solve this problem, a new incompressible isotropic constitutive model for the elasticity of the rubber-like materials was proposed in this paper. The form of the constitutive model was studied and a new model was proposed based on plane stress deformation state. This model is an isotropic incompressible model which is defined in terms of the first and second principal stretches and is applicable to describe the elasticity of rubber-like materials in general deformation state. The deformation rules of the material subjected to a lateral constraint was studied and the constraints which this model should satisfy were studied. With a proposed function for stress-strain relation of rubber-like materials under plane stress deformation, a method and a function was proposed to extend the function for plane stress deformation states to a general one for arbitrary three-dimensional deformation states. Thus, a new general incompressible isotropic elastic constitutive model for rubber-like materials was derived. The model was fitted to five groups of test data which all include three types of test and a biaxial test data which covers a broad range of deformation state. The results show that this model fits the test data very well and has a better reliability than the existing models. Besides, the model can predict the material's response well even with a type of test data such as the uniaxial tension test.
  • [1] 邹广平, 张冰, 唱忠良 等. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究. 力学学报, 2018,50(5):1125-1134
    [1] ( Zou Guangping, Zhang Bing, Chang Zhongliang , et al. Hysteresis mechanical model and experimental study of spring metal-net rubber combination damper. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1125-1134(in Chinese))
    [2] 黄小双, 彭雄奇, 张必超 . 帘线/橡胶复合材料各向异性黏-超弹性本构模型. 力学学报, 2016,48(1):140-145
    [2] ( Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao . An anisotropic visco-hyperelastic constitution model for cord-rubber composites. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(1):140-145(in Chinese))
    [3] 谈炳东, 许进升, 孙朝翔 等. 短纤维增强三元乙丙橡胶横观各向同性黏-超弹性本构模型, 力学学报, 2017,49(3):677-684
    [3] ( Tan Bingdong, Xu Jinsheng, Sun Chaoxiang , et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber feinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):677-684 (in Chinese))
    [4] Mooney M . A theory of large elastic deformation. Journal of Applied Physics, 1940,11(9):582-592
    [5] Treloar LRG . The elasticity of a network of long-chain molecules-I. Transactions of the Faraday Society, 1943,39:36-41
    [6] Rivlin RS . Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London,Series A, Mathematical and Physical Sciences, 1948,241(835):379-397
    [7] Ogden RW . Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1972,326(1567):565-584
    [8] Yeoh OH . Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 1993,66(5):754-771
    [9] Gent AN . A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996,69(1):59-61
    [10] Shariff MHBM . Strain energy function for filled and unfilled rubber like material. Rubber Chemistry and Technology, 2000,73(1):1-18
    [11] Carroll MM . A strain energy function for vulcanized rubbers. Journal of Elasticity, 2011,103(2):173-187
    [12] Mansouri MR, Darijani HD . Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International Journal of Solids and Structures, 2014,51:4316-4326
    [13] Arruda EM, Boyce MC . A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993,41(2):389-412
    [14] Kaliske M, Heinrich G . An extended tube-model for rubber elasticity: statistical mechanical theory and finite element implementation. Rubber Chemistry and Technology, 1999,72(4):602-632
    [15] Miehe C, G?ktepe S . A micro-macro approach to rubber-like materials. PartII: themicro spheremodel of finiterubber viscoelasticity. Journal of the Mechanics and Physics of Solids, 2005,53(10):2231-2258
    [16] Drozdov AD, de Claville Christiansen J . Constitutive equations for the nonlinear elastic response of rubbers. Acta Mechanica, 2006,185(1-2):31-65
    [17] Kroon M . An 8-chain model for rubber-likematerials accounting for non-affinechain deformations and topological constraints. Journal of Elasticity, 2011,102(2):99-116
    [18] Davidson JD, Goulbourne NC . A nonaffine network model for elastomers undergoing finite deformations. Journal of the Mechanics and Physics of Solids, 2013,61:1784-1797
    [19] Vu Ngoc Khiêm, Mikhail Itskov . Analytical network-averaging of the tube model: Rubber elasticity. Journal of the Mechanics and Physics of Solids, 2016,95:254-269
    [20] Zhou J, Jiang L, Khayat RE . A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. Journal of the Mechanics and Physics of Solids, 2018,110:137-154
    [21] Nishi K, Fujii K, Chung U , et al. Experimental observation of two features unexpected from the classical theories of rubber elasticity. Physical Review Letters, 2017, 119: 267801-1-5
    [22] Steinmann P, Hossain M, Possart G . Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar's data. Archive of Applied Mechanics, 2012,82(9):1183-1217
    [23] Rickard OHW, Kari L . An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications. Polymer Testing, 2015,41:44-54
    [24] Ogden RW . Non-Linear Elastic Deformations. New York: Dover Publications, 1997
    [25] Treloar LRG . Stress-strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 1944,40:59-70
    [26] 丁智平, 杨荣华, 黄友剑 等. 基于连续损伤模型橡胶弹性减振元件疲劳寿命分析. 机械工程学报, 2014,50(10):80-86
    [26] ( Ding Zhiping, Yang Ronghua, Huang Youjian , et al. Fatigue life analysis of rubber vibration damper based on continnum damage model. Journal of Mechanical Engineering, 2014,50(10):80-86 (in Chinese))
    [27] Meunier L, Chagnon G, Favier D , et al. Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polymer Testing, 2008,27(6):765-777
    [28] 赵国营 .天然橡胶材料基础拉伸实验研究 . [硕士论文].青岛:青岛科技大学, 2016年
    [28] ( Zhao Guoying . Study on tensile test of natural rubber material. [Master Thesis]. Qingdao: Qidao University of Science and Technology, 2016 (in Chinese))
    [29] Kawabata S, Matsuda M, Tei K , et al. Experimental survey of the strain energy density function of isoprene rubber vulcanizate. Macromolecules, 1981,14:154-162
  • 期刊类型引用(20)

    1. 袁加乾,孙飞鹰,陈哲吾. 高速履带车辆履带销轴橡胶衬套连接力学性能研究. 兵器装备工程学报. 2024(09): 261-268 . 百度学术
    2. 李锋,彭天波. 包含Mullins效应的HDR热-超-黏弹性本构模型. 力学学报. 2024(12): 3498-3506 . 本站查看
    3. 魏志刚,陈海波,罗仲龙,胡文锋. 橡胶材料弹性的一种新的螺旋管模型. 力学学报. 2023(02): 417-432 . 本站查看
    4. 韦雅宁,魏志刚,左俊杰. 一种新的超弹性本构模型用户材料子程序开发. 蚌埠学院学报. 2023(05): 58-63 . 百度学术
    5. 李东民,赵柳杨,杜浩,王通,马文平. 基于虚位移原理的变刚度软体手指工作角度设计. 制造业自动化. 2023(12): 83-88 . 百度学术
    6. 张文海,郑水利. 不同路况下履带车辆轮胎的动力学特性仿真分析. 轮胎工业. 2022(01): 3-9 . 百度学术
    7. 范海伦,祖洪飞,向忠,彭来湖. 传感器弹性元件本构模型参数拟合研究. 轻工机械. 2022(01): 7-12+18 . 百度学术
    8. 魏家威,石霄鹏,冯振宇. 应变率相关的橡胶本构模型研究. 高压物理学报. 2022(02): 107-117 . 百度学术
    9. 谢伟. 橡胶材料本构模型的有限元分析及参数拟合. 福建建材. 2022(04): 11-14 . 百度学术
    10. 郑杰,顾冉星,贾俊峰,张建勋,王召辉. 高阻尼橡胶隔震支座力学性能研究及其桥梁工程应用进展. 防灾科技学院学报. 2022(02): 1-15 . 百度学术
    11. 周建雄,魏志刚,毛欢,韦雅宁,刘迎松. 各向同性超弹性本构模型数值计算及验证. 计算力学学报. 2022(04): 523-530 . 百度学术
    12. 韩磊,王新彤,李录贤. 基于Treloar实验数据的超弹性材料完全本构关系研究. 力学学报. 2022(12): 3444-3455 . 本站查看
    13. 黄锐宇,于培师,刘禹,田常录,常晋源,王鹏飞,赵军华. 聚硅氧烷硅胶的黏超弹性力学行为研究. 力学学报. 2021(01): 184-193 . 本站查看
    14. 肖锐,向玉海,钟旦明,曲绍兴. 考虑缠结效应的超弹性本构模型. 力学学报. 2021(04): 1028-1037 . 本站查看
    15. 邓继涛,程计栋,李淑慧. 胶类零件热变形及其对车身钣金零件变形的影响分析. 塑性工程学报. 2021(05): 242-248 . 百度学术
    16. 高政国,董朋昆,张雅俊,孙卉竹,迪亚. 一种滞弹簧耗能的新型离散元滚动阻力模型研究. 力学学报. 2021(09): 2384-2394 . 本站查看
    17. 赵子涵,穆希辉,杜峰坡. 一种基于Seth应变张量的超弹性模型. 振动与冲击. 2020(02): 227-233 . 百度学术
    18. 张希润,蔡力勋,陈辉. 基于能量密度等效的超弹性压入模型与双压试验方法. 力学学报. 2020(03): 787-796 . 本站查看
    19. 史惠琦,王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析. 力学学报. 2020(06): 1719-1729 . 本站查看
    20. 何松林,俞安,任杰. 橡胶粘弹性分数导数本构模型合理性研究. 昆明学院学报. 2020(06): 78-83 . 百度学术

    其他类型引用(22)

计量
  • 文章访问数:  1963
  • HTML全文浏览量:  313
  • PDF下载量:  323
  • 被引次数: 42
出版历程
  • 收稿日期:  2018-09-09
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回