EI、Scopus 收录
中文核心期刊

准静态条件下金属材料的临界断裂准则研究

于思淼, 蔡力勋, 姚迪, 包陈, 陈辉, 彭云强, 韩光照

于思淼, 蔡力勋, 姚迪, 包陈, 陈辉, 彭云强, 韩光照. 准静态条件下金属材料的临界断裂准则研究[J]. 力学学报, 2018, 50(5): 1063-1080. DOI: 10.6052/0459-1879-18-172
引用本文: 于思淼, 蔡力勋, 姚迪, 包陈, 陈辉, 彭云强, 韩光照. 准静态条件下金属材料的临界断裂准则研究[J]. 力学学报, 2018, 50(5): 1063-1080. DOI: 10.6052/0459-1879-18-172
Yu Simiao, Cai Lixun, Yao Di, Bao Chen, Chen Hui, Peng Yunqiang, Han Guangzhao. THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1063-1080. DOI: 10.6052/0459-1879-18-172
Citation: Yu Simiao, Cai Lixun, Yao Di, Bao Chen, Chen Hui, Peng Yunqiang, Han Guangzhao. THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1063-1080. DOI: 10.6052/0459-1879-18-172
于思淼, 蔡力勋, 姚迪, 包陈, 陈辉, 彭云强, 韩光照. 准静态条件下金属材料的临界断裂准则研究[J]. 力学学报, 2018, 50(5): 1063-1080. CSTR: 32045.14.0459-1879-18-172
引用本文: 于思淼, 蔡力勋, 姚迪, 包陈, 陈辉, 彭云强, 韩光照. 准静态条件下金属材料的临界断裂准则研究[J]. 力学学报, 2018, 50(5): 1063-1080. CSTR: 32045.14.0459-1879-18-172
Yu Simiao, Cai Lixun, Yao Di, Bao Chen, Chen Hui, Peng Yunqiang, Han Guangzhao. THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1063-1080. CSTR: 32045.14.0459-1879-18-172
Citation: Yu Simiao, Cai Lixun, Yao Di, Bao Chen, Chen Hui, Peng Yunqiang, Han Guangzhao. THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1063-1080. CSTR: 32045.14.0459-1879-18-172

准静态条件下金属材料的临界断裂准则研究

基金项目: 1)国家自然科学基金资助项目(11472228).
详细信息
    作者简介:

    2)蔡力勋, 教授, 主要研究方向:断裂与疲劳、强度理论、材料测试理论与技术. E-mail: lix_cai@263.net

    通讯作者:

    蔡力勋

  • 中图分类号: O346;

THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING

  • 摘要: 本文针对9种金属材料完成了具有不同约束程度的10类试样的延性断裂试验, 获得了发生拉、压、扭和裂尖断裂等破坏形式构型试样的载荷-位移试验关系; 基于圆棒漏斗试样拉伸试验所得直至破坏的载荷-位移曲线, 采用有限元辅助试验(finite-element-analysis aided testing, FAT)方法得到了9种材料直至破坏的全程等效应力-应变曲线, 以此作为材料本构关系通过有限元分析获得了各类试样直至临界破坏的载荷-位移关系模拟. 载荷-位移关系模拟结果与试验结果有较好的一致性, 表明用于解决试样颈缩问题的FAT方法所获得的全程材料本构关系针对各向同性材料具有真实性和普适性. 对应9种材料、10类试样的36 个载荷-位移临界断裂点, 通过有限元分析获得了对应的材料临界断裂应力、应变与临界应力三轴度, 研究表明, 第一主应力在延性变形过程中为主控断裂的主导参量; 通过研究光滑、缺口、裂纹等构型试样的断裂状态, 提出了$-1$至3范围的应力三轴度下由第一主应力主控的统一塑性临界断裂准则.
    Abstract: For 10 types of specimens with different constraints, ductile fracture tests of 9 metal materials under unidirection loading were performed, and their load-displacement relations were measured. Based on the load-displacement curves of notched round bar, the full-range equivalent constitutive relationships of materials up to failure were obtained by FAT (finite-element-analysis aided testing) method. Further, the simulated force-displacement curves for different specimens were obtained based on the full-range constitutive relations, which agree well with the experimental force-displacement curves. The results demonstrate that the full-range constitutive relations up to failure obtained by FAT method have uniqueness for the materials. The critical fracture parameters such as critical stress, critical strain and critical stress triaxiality are investigated by failure simulations for the 36 specimens with different constraints. The first principal stress is suggested to be the master parameter to control ductile fracture. By analyzing the critical behaviors of the specimens which are smooth, notched and cracked, respectively, a unified strength criterion for ductile materials with stress triaxiality varying from $-1$ to 3 is proposed.
  • [1] Freudenthal AM.The Inelastic Behaviour of Solids. New York: Wiley, 1950
    [2] Cockcroft MG, Latham DJ.Ductility and the workability of metals. J Inst Met., 1968, 96(1): 33-39
    [3] Rice JR, Tracey DM.On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217
    [4] Brozzo P, Deluca B, Rendina R.A new method for the prediction of formability limits in metal sheets//Proc. 7th biennal Conf. IDDR. 1972
    [5] Oh SI, Kobayashi S.Workability of aluminum alloy 7075-T6 in upsetting and rolling. Journal of Engineering for Industry, 1976, 98(3): 800-806
    [6] Gurson AL.Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15
    [7] Tvergaard V.Influence of voids on shear band instabilities under plane strain conditions. International Journal of fracture, 1981, 17(4): 389-407
    [8] Tvergaard V.On localization in ductile materials containing spherical voids. International Journal of Fracture, 1982, 18(4): 237-252
    [9] Tvergaard V, Needleman A.Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 1984, 32(1): 157-169
    [10] Needleman A, Tvergaard V.An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490
    [11] Nahshon K, Hutchinson JW.Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 2008, 27(1): 1-17
    [12] Nielsen KL, Tvergaard V.Effect of a shear modified Gurson model on damage development in a FSW tensile specimen. International Journal of Solids and Structures, 2009, 46(3-4): 587-601
    [13] 彭云强, 蔡力勋, 包陈等.基于材料全程本构关系对延性断裂韧性的数值模拟方法与应用. 工程力学, 2016, 33(5):11-17
    [13] (Peng Yunqing, Cai Lixun, Yao Di, et al.Numerical simulation methods and application for ductile fracture toughness based on full-range constitutive relationship. Engineering Mechanics, 2016, 33(5): 11-17 (in Chinese))
    [14] 古斌, 郭宇立, 李群. 基于构型力断裂准则的裂纹与夹杂干涉问题. 力学学报, 2017, 49(6): 1312-1321
    [14] (Gu Bing, Guo Yuli, Li Qun.Crack interacting with an individual inclusion by the fracture criterion of configuration al force. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1322-1334 (in Chinese))
    [15] 姚迪, 蔡力勋, 包陈等. 基于试验与有限元耦合技术的延性材料全程单轴本构关系获取方法. 固体力学学报, 2014, 35(3): 226-240
    [15] (Yao Di, Cai Lixun, Bao Chen, et al.Determination of stress-strain curve of ductile materials by testing and finite element coupling method. Chinese Journal of Solid Mechanics, 2014, 35(3): 226-240 (in Chinese))
    [16] 蔡力勋, 姚迪, 包陈. 单轴拉伸全程真应力-真应变曲线测试技术.中国专利: 201210518207, 2013
    [16] (Cai Lixun, Yao Di, Bao Chen.The testing technology of materials tensile constitutive curves. Chinese Patent: 201210518207, 2013 (in Chinese))
    [17] Bai Y, Wierzbicki T.Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 2010, 161(1): 1
    [18] Mohr O.Abhandlungen aus dem gebiete der technischen mechanik. 1906
    [19] Chen X, Shi MF, Shih HC, et al.AHSS shear fracture predictions based on a recently developed fracture criterion. SAE International Journal of Materials and Manufacturing, 2010, 3(2010-01-0988): 723-731
    [20] Luo M, Dunand M, Mohr D.Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading-Part II: Ductile fracture. Int. J. Plast International Journal of Plasticity, 2012, 32: 36-58
    [21] 高江平, 杨华, 蒋宇飞等. 三剪应力统一强度理论研究. 力学学报, 2017, 49(6): 1322-1334
    [21] (Gao Jiangping, Yang Hua, Jiang Yufei, et al.Study of three-shear stress unified strength theory. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1322-1334 (in Chinese))
    [22] Johnson GR, Cook WH.Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, 21(1): 31-48
    [23] Bao Y, Wierzbicki T.On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 2004, 46(1): 81-98
    [24] Gentile D, Newaz G, Bonora N, et al.Ductile damage evolution under triaxial state of stress: Theory and experiments. Inter. J. Plast., 2005, 21(5): 981-1007
    [25] Bai Y, Wierzbicki T.A new model of metal plasticity and fracture with pressure and lode dependence. International Journal of Plasticity, 2008, 24: 1071
    [26] Hopperstad OS, Borvik T, Langseth M, et al.On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part I. Experiments. European Journal of Mechanics-A/Solids, 2003, 22(1): 15-32
    [27] Anderson D, Winkler S, Bardelcik A, et al.Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel. Materials & Design, 2014, 60(8): 198-207
    [28] Bridgman P W.Studies in Large Plastic Flow and Fracture. New York: McGraw-Hill, 1952
    [29] Eduardo E., Diego J.Celentano Experimental and numerical analysis of the tensile test using sheet specimens. Finite Elements in Analysis and Design, 2004, 40(5): 555-575
    [30] Zhang KS.Technical note fracture prediction and necking analysis. Engineering Fracture Mechanics, 1995, 52(3): 575-582
    [31] Brünig M.Numerical analysis and modeling of large deformation and necking behavior of tensile specimens. Finite Elements in Analysis and Design, 1998, 28(4): 303-319
    [32] Dumoulin S, Tabourot L, Chappuis C, et al.Determination of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading. Journal of Materials Processing Technology, 2003, 133(1-2): 79-83
    [33] Joun MS, Eom JG, Lee MC.A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method. Mechanics of Materials, 2008, 40(7): 586-593
    [34] Yao D, Cai L, Bao C.A new strength criterion for ductile materials based on a finite element aided testing method. Materials Science and Engineering: A, 2016, 673: 633-647
    [35] Chen H, Cai LX.Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle. Materials Science and Engineering: A, 2016, 121: 181-189
    [36] Chen H, Cai L.Unified elastoplastic model based on a strain energy equivalence principle. Applied Mathematical Modelling, 2017, 52: 664-671
    [37] 贺屹, 蔡力勋, 陈辉等. 求解I 型裂纹构元J 积分的半解析方法. 力学学报, 2018, 50(3): 579-588
    [37] (He Yi, Cai Lixun, Chen Hui, et al.A semi analytical method to solve J-integral for mode-I crack components. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 579-588 (in Chinese))
计量
  • 文章访问数:  1718
  • HTML全文浏览量:  234
  • PDF下载量:  397
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 刊出日期:  2018-09-17

目录

    /

    返回文章
    返回