EI、Scopus 收录
中文核心期刊

石英玻璃圆环高速膨胀碎裂过程的离散元模拟

熊迅, 李天密, 马棋棋, 方继松, 郑宇轩, 周风华

熊迅, 李天密, 马棋棋, 方继松, 郑宇轩, 周风华. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟[J]. 力学学报, 2018, 50(3): 622-632. DOI: 10.6052/0459-1879-17-410
引用本文: 熊迅, 李天密, 马棋棋, 方继松, 郑宇轩, 周风华. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟[J]. 力学学报, 2018, 50(3): 622-632. DOI: 10.6052/0459-1879-17-410
Xiong Xun, Li Tianmi, Ma Qiqi, Fang Jisong, Zheng Yuxuan, Zhou Fenghua. DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622-632. DOI: 10.6052/0459-1879-17-410
Citation: Xiong Xun, Li Tianmi, Ma Qiqi, Fang Jisong, Zheng Yuxuan, Zhou Fenghua. DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622-632. DOI: 10.6052/0459-1879-17-410
熊迅, 李天密, 马棋棋, 方继松, 郑宇轩, 周风华. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟[J]. 力学学报, 2018, 50(3): 622-632. CSTR: 32045.14.0459-1879-17-410
引用本文: 熊迅, 李天密, 马棋棋, 方继松, 郑宇轩, 周风华. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟[J]. 力学学报, 2018, 50(3): 622-632. CSTR: 32045.14.0459-1879-17-410
Xiong Xun, Li Tianmi, Ma Qiqi, Fang Jisong, Zheng Yuxuan, Zhou Fenghua. DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622-632. CSTR: 32045.14.0459-1879-17-410
Citation: Xiong Xun, Li Tianmi, Ma Qiqi, Fang Jisong, Zheng Yuxuan, Zhou Fenghua. DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622-632. CSTR: 32045.14.0459-1879-17-410

石英玻璃圆环高速膨胀碎裂过程的离散元模拟

基金项目: 国家自然科学基金(11390361,11402130),浙江省重点科技创新团队(2013TD21)和爆炸科学与技术国家重点实验室开 放课题(KFJJ13-11M)资助项目.
详细信息
    作者简介:

    通讯作者:郑宇轩, 副教授, 主要研究方向: 冲击动力学. E-mail:zhengyuxuan@nbu.edu.cn

    通讯作者:

    郑宇轩

  • 中图分类号: O346.1;

DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS

  • 摘要: 采用离散元算法模拟了石英玻璃圆环受到外加动态载荷时的力学行为. 首先基于flat-jointed粘结模型,通过标准的单轴拉压、三点弯曲等数值实验来标定了石英玻璃的微观参数. 在此模型基础上,数值模拟再现了石英玻璃圆环在不同应变率下的膨胀碎裂过程. 为定量分析数值模拟结果,需要准确确定圆环的碎裂发生时刻. 模拟发现:伴随着石英玻璃圆环的断裂,圆环外表面粒子径向膨胀速度的时程曲线会发生突然升高然后下降的跳动;详细分析表明,这种跳动源自周向的脆性断裂诱发的卸载波(周向拉伸应力急剧下降)以及伴随而来的泊松膨胀,这种径向速度跳动现象为实验中检测脆性断裂发生时刻提供了可能. 进一步的数值研究表明:(1)石英玻璃圆环的断裂应变随着应变率的提高而增大,与韧性金属材料的膨胀环实验结果一致;(2)石英玻璃圆环的碎片平均质量随着应变率的增大而减小;(3)数值计算获得的碎片平均尺寸与已有的理论和实验结果比较吻合. 利用液压膨胀环实验装置对石英玻璃圆环进行了验证性实验,回收得到的碎片形貌及碎片个数与数值模拟的结果基本一致.
    Abstract: The mechanical behavior of quartz glass rings under internal velocity impact is simulated by using discrete element method (DEM) based on the flat-jointed bond model. The microscopic mechanical parameters of the quartz glass ring were determined by comparing the standard uniaxial compressive/tensile and three-point bending numerical test results with the experimental results. Using these material parameters, the fragmentation processes of quartz glass rings under different impact velocities were numerically simulated. The numerical results showed that: the failure time of the quartz glass ring corresponded to a rebounding of the radial velocity, macroscopically this timing is coincident with the rapid drop of average stress. This radial velocity rebounding is attributed to the unloading waves incited from the brittle cracking of the tensile specimen, and can be used in the numerical analysis as the failure point. Detailed numerical tests and analysis showed that: (1) The fracture strain of quartz glass ring increases with the increase of strain rate, a phenomenon consistent with experimental observations for ductile materials; (2) The average mass of the quartz glass ring decreases with the increasing strain rate; (3) The average fragment size in the simulation was consistent with the theoretical and experimental data in other papers. An experiment device of liquid-driven expanding ring was used to conduct preliminary tests. The morphology and the number of fragments recovered from real tests are consistent with the numerical simulations.
  • [1] Grady DE, Kipp ME. Continuum modelling of explosive fracture in oil shale.International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147-157
    [2] Zhou F, Molinari JF. Stochastic fracture of ceramics under dynamic tensile loading.International Journal of Solids & Structures, 2004, 41(22-23): 6573-6596
    [3] Hild F, Denoual C, Forquin P, et al. On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials. Computers & Structures, 2003, 81(12): 1241-1253
    [4] Grady DE. Local inertial effects in dynamic fragmentation.Journal of Applied Physics, 1982, 53(1): 322-325
    [5] Glenn LA, Chudnovsky A. Strain-energy effects on dynamic fragmentation.Journal of Applied Physics, 1986, 59(4): 1379-1380
    [6] Gilvarry JJ, Bergstrom BH. Fracture of brittle solids. II. Distribution function for fragment size in single fracture (experimental).Journal of Applied Physics, 1961, 32: 400-410
    [7] Gilvarry JJ, Bergstrom BH. Fracture of brittle solids. III. Experimental results on the distribution of fragment size in single fracture.Journal of Applied Physics, 1962, 33: 3211-3213
    [8] Sarva S, Nemat-Nasser S. Dynamic compressive strength of silicon carbide under uniaxial compression.Materials Science and Engineering, 2001, A317: 140-144
    [9] Wang H, Ramesh KT. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression.Acta Materialia, 2004, 52: 355-367
    [10] Rasorenov SV, Kanel GI, Fortov VE, et al. The fracture of glass under high-pressure impulsive loading.High Pressure Research, 1991, 6(4): 225-232
    [11] Johnson PC, Stein BA, Davis KS. Measurement of plastic flow properties under uniform stress. 1963
    [12] Niordson FI. A unit for testing materials at high strain rates.Experimental Mechanics, 1965, 5(1): 29-32
    [13] 汤铁钢, 刘仓理. 一种新型爆炸膨胀环实验装置. 实验力学, 2013, 28(2): 247-254
    [13] (Tang Tiegang, Liu Cangli. A novel experimental setup for explosively loaded expanding ring test.Journal of Experimental Mechanics, 2013, 28(2): 247-254 (in Chinese))
    [14] Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation - I. Real-time and post-mortem observations in Al 6061-O.International Journal of Fracture, 2007, 142(3): 183-217
    [15] 桂毓林, 孙承纬, 李强等. 实现金属环动态拉伸的电磁加载技术研究. 爆炸与冲击, 2006, 26(6): 28-28
    [15] (Gui Yulin, Sun Chengwei, Li Qiang, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading.Explosion & Shock Waves, 2006, 26(6): 28-28 (in Chinese))
    [16] 王永刚, 周风华. 径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究. 固体力学学报, 2008, 29(3): 245-249
    [16] (Wang Yonggang, Zhou Fenghua. Experimental study on the dynamic tensile framentations of Al2O3 rings under radial expansion.Chinese Journal of Solid Mechanics, 2008, 29(3): 245-249 (in Chinese))
    [17] 郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术. 爆炸与冲击, 2014, 34(4): 483-488
    [17] (Zheng Yuxuan, Zhou Fenghua, Hu Shisheng. An SHPB-based experimental technique for dynamic fragmentations of expanding rings.Explosion and Shock Waves, 2014, 34(4): 483-488 (in Chinese))
    [18] 张佳, 郑宇轩, 周风华. 立式液压膨胀环实验技术研究. 宁波大学学报(理工版), 2017, 30(2): 35-38
    [18] (Zhang Jia, Zheng Yuxuan, Zhou Fenghua. Experimental technique for fragmentation of liquid-driven expanding ring. Journal of Ningbo University ( Natural Science and Engineering Edition), 2017, 30(2): 35-38 (in Chinese))
    [19] 李天密,张佳,方继松等. PMMA膨胀环动态拉伸碎裂实验研究. 力学学报, 2018, 50(4): doi:10.6052/0459-1879-18-016
    [19] (Li Tianmi, Zhang Jia, Fang Jisong, et al. Experimental study of the high velocity expansion and fragmentation of PMMA rings. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): doi:10.6052/0459-1879-18-016 (in Chinese))
    [20] Potyondy DO, Cundall PA. A bonded-particle model for rock.International Journal of Rock Mechanics & Mining Sciences, 2004, 41: 1329-1364
    [21] 冯春, 李世海, 刘晓宇. 基于颗粒离散元法的连接键应变软化模型及其应用. 力学学报, 2016, 48(1): 76-85
    [21] (Feng Chun, Li Shihai, Liu Xiaoyu. Particle-DEM based linked bar strain softening model and its application.Chinese Journal of Theoretical & Applied Mechanics, 2016, 48(1): 76-85 (in Chinese))
    [22] Xia M,Zhao C. Simulation of rock deformation and mechanical characteristics using clump parallel-bond models.Journal of Central South University, 2014, 21(7): 2885-2893
    [23] Cho N, Martin CD, Sego DC. A clumped particle model for rock.International Journal of Rock Mechanics & Mining Sciences, 2007, 44(7): 997-1010
    [24] 周喻, Misra A, 吴顺川等. 岩石节理直剪试验颗粒流宏细观分析. 岩石力学与工程学报, 2012, 31(6): 1245-1256
    [24] (Zhou Yu, Misra A, Wu Shunchuan, et al. Macro- and meso-analyses of rock joint direct shear test using particle flow theory.Chinese Journal of Rock Mechanics & Engineering, 2012, 31(6): 1245-1256 (in Chinese))
    [25] Park JW, Song JJ. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model.International Journal of Rock Mechanics & Mining Sciences, 2009, 46(8): 1315-1328
    [26] Potyondy DO. A flat-jointed bonded-particle material for hard rock// 46 textsuperscriptth U.S. Rock Mechanics/Geomechanics Symposium. 2012
    [27] Yang B, Jiao Y, Lei S. A study on the effects of micro parameters on macro properties for specimens created by bonded particles.Engineering Computations, 2006, 23(6): 607-631
    [28] 王玉芬, 刘连城. 石英玻璃. 北京: 化学工业出版社, 2007
    [28] (Wang Yufen, Liu Liancheng. Quartz Glass.Beijing: Chemical Industry Press, 2007 (in Chinese))
    [29] 王承遇, 卢琪, 陶瑛. 玻璃的脆性(一). 玻璃与搪瓷, 2011, 39(6): 37-43
    [29] (Wang Chengyu, Lu Qi, Tao Ying. Brittleness of glass. Glass & Enamel, 2011, 39(6): 37-43 (in Chinese))
    [30] Zhou F, Molinari JF, Ramesh KT. Effects of material properties on the fragmentation of brittle materials. International Journal of Fracture, 2006, 139(2): 169-196
    [31] 郑宇轩, 周风华, 胡时胜等. 固体的冲击拉伸碎裂. 力学进展, 2016, 46: 201612
    [31] (Zheng Yuxuan, Zhou Fenghua, Hu Shisheng, et al. Fragmentations of solids under impact tension. Advances in Mechanics, 2016, 46: 201612 (in Chinese))
  • 期刊类型引用(15)

    1. 何立恒 ,李海波 ,李潜 ,李晓锋 . 岩石Mott环自由膨胀动态破碎特征研究. 力学学报. 2025(02): 502-515 . 本站查看
    2. 王衍行,李现梓,韩韬,肖雷,何坤,祖成奎. 高强高韧玻璃的研究进展. 材料导报. 2022(21): 81-87 . 百度学术
    3. 汤佳妮,徐便,郑宇轩,周风华. 脆性膨胀环动态拉伸碎裂实验研究. 爆炸与冲击. 2021(01): 96-104 . 百度学术
    4. 刘明,侯冬杨,高诚辉. 利用维氏和玻氏压头表征半导体材料断裂韧性. 力学学报. 2021(02): 413-423 . 本站查看
    5. 方继松,王珠,熊迅,郑宇轩,周风华. 石英玻璃球撞击刚性壁的破碎过程. 高压物理学报. 2020(01): 66-73 . 百度学术
    6. 张华腾,凡凤仙,王志强. 颗粒毛细效应影响因素的离散元分析. 力学学报. 2020(02): 442-450 . 本站查看
    7. 蒋招绣,高光发,王永刚. 多孔铁电陶瓷冲击压缩响应与损伤演化的离散元数值模拟. 爆炸与冲击. 2020(05): 66-73 . 百度学术
    8. 张雪宽,徐骥,孙俊杰,张永杰,张正好,葛蔚. 竖冷设备中烧结矿石偏析行为的GPU高性能模拟. 力学学报. 2019(01): 64-73 . 本站查看
    9. 龙雪,刘社文,季顺迎. 水位变化对正倒锥体冰载荷影响的离散元分析. 力学学报. 2019(01): 74-84 . 本站查看
    10. 刘嘉英,周伟,马刚,李易奥,刘其文. 颗粒材料三维应力路径下的接触组构特性. 力学学报. 2019(01): 26-35 . 本站查看
    11. 凡凤仙,王志强,刘举,张华腾. 竖直振动管中颗粒毛细效应的离散元模拟. 力学学报. 2019(02): 415-424 . 本站查看
    12. 熊迅,王珠,郑宇轩,周风华,徐振. 石英玻璃杆Taylor撞击实验的数值模拟. 力学学报. 2019(04): 1082-1090 . 本站查看
    13. 马棋棋,熊迅,郑宇轩,周风华. 无机玻璃动态压缩破坏的离散元模拟. 高压物理学报. 2019(04): 63-73 . 百度学术
    14. 刘璐,尹振宇,季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法. 力学学报. 2019(06): 1720-1739 . 本站查看
    15. 李天密,张佳,方继松,刘丽芝,郑宇轩,周风华. PMMA膨胀环动态拉伸碎裂实验研究. 力学学报. 2018(04): 820-827 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  1572
  • HTML全文浏览量:  250
  • PDF下载量:  269
  • 被引次数: 21
出版历程
  • 收稿日期:  2017-12-07
  • 刊出日期:  2018-05-17

目录

    /

    返回文章
    返回