EI、Scopus 收录
中文核心期刊

高温下编织复合材料热相关参数识别方法研究

费庆国, 姜东, 陈素芳, 秦福溶

费庆国, 姜东, 陈素芳, 秦福溶. 高温下编织复合材料热相关参数识别方法研究[J]. 力学学报, 2018, 50(3): 497-507. DOI: 10.6052/0459-1879-18-078
引用本文: 费庆国, 姜东, 陈素芳, 秦福溶. 高温下编织复合材料热相关参数识别方法研究[J]. 力学学报, 2018, 50(3): 497-507. DOI: 10.6052/0459-1879-18-078
Fei Qingguo, Jiang Dong, Chen Sufang, Qin Furong. THERMAL-RELATED PARAMETER IDENTIFICATION OF BRAIDED COMPOSITES AT HIGH TEMPERATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 497-507. DOI: 10.6052/0459-1879-18-078
Citation: Fei Qingguo, Jiang Dong, Chen Sufang, Qin Furong. THERMAL-RELATED PARAMETER IDENTIFICATION OF BRAIDED COMPOSITES AT HIGH TEMPERATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 497-507. DOI: 10.6052/0459-1879-18-078
费庆国, 姜东, 陈素芳, 秦福溶. 高温下编织复合材料热相关参数识别方法研究[J]. 力学学报, 2018, 50(3): 497-507. CSTR: 32045.14.0459-1879-18-078
引用本文: 费庆国, 姜东, 陈素芳, 秦福溶. 高温下编织复合材料热相关参数识别方法研究[J]. 力学学报, 2018, 50(3): 497-507. CSTR: 32045.14.0459-1879-18-078
Fei Qingguo, Jiang Dong, Chen Sufang, Qin Furong. THERMAL-RELATED PARAMETER IDENTIFICATION OF BRAIDED COMPOSITES AT HIGH TEMPERATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 497-507. CSTR: 32045.14.0459-1879-18-078
Citation: Fei Qingguo, Jiang Dong, Chen Sufang, Qin Furong. THERMAL-RELATED PARAMETER IDENTIFICATION OF BRAIDED COMPOSITES AT HIGH TEMPERATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 497-507. CSTR: 32045.14.0459-1879-18-078

高温下编织复合材料热相关参数识别方法研究

基金项目: 国家自然科学基金资助项目(11602112, 11572086).
详细信息
    作者简介:

    通讯作者:费庆国, 教授, 主要研究方向: 结构动力学. E-mail:qgFei@seu.edu.cn

    通讯作者:

    费庆国

  • 中图分类号: V214.3;

THERMAL-RELATED PARAMETER IDENTIFICATION OF BRAIDED COMPOSITES AT HIGH TEMPERATURE

  • 摘要: 为了获取高温下编织复合材料的准确弹性参数与热膨胀系数,提出一种基于均匀化理论的热相关参数识别方法. 首先,在编织复合材料单胞有限元模型基础上,基于均匀化理论和热弹性理论,施加周期性位移边界条件和温度边界条件,预测编织复合材 料的热弹性相关参数. 然后,考虑到等效过程中编织复合材料应力分布不均匀等因素引起的误差,将复合材料精细模型的热模态数据作为补 充信息,识别编织复合材料热相关参数,对预测的材料参数进行校准. 本文在二维编织结构单胞模型基础上,开展等效预测和识别方法研 究,验证所提出方法的有效性和准确性. 对比等效和识别后热模态的误差,结果表明:本文提出的基于等效预测的参数识别方法,能够 准确识别高温下编织复合材料宏观热相关参数.
    Abstract: To obtain accurate elastic parameters and coefficient of thermal expansion (CTE) of braided composites at high temperature, An approach for identifying thermal-related parameters based on homogenization theory is proposed. Firstly, on the basis of the finite element model of unit cell, the thermo-elastic parameters of the braided composites are predicted, basing on the theory of homogenization and thermos elasticity, and by applying the periodic displacement and temperature boundary conditions. Secondly, considering the errors in the equivalent process causing by the uneven distributed stress, the thermal modal frequencies of the refined model are taken as the supplementary information to further identify the thermo-elastic parameters, as a calibration of the predicted parameters. Based on the finite element unit cell model of two-dimensional braided structure, this paper carries out equivalent prediction and identification, to verify the validity and accuracy of the proposed method. after comparing the error of the thermal mode of equival model and identification model, it is shown that the proposed method based on equivalent prediction and parameter identification can accurately identify the macro-thermo-elasticity related parameters of braided composites at high temperature.
  • [1] 刘人怀, 薛江红. 复合材料层合板壳非线性力学的研究进展. 力学学报, 2017, 49(3): 487-506
    [1] (Liu Renhuai, Xue Jianghong.Development of nonlinear theories for laminated composite plates and shells. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 487-506 (in Chinese))
    [2] 郭洪宝, 王波, 贾普荣等. 平纹编织陶瓷基复合材料面内剪切细观损伤行为研究. 力学学报, 2016, 48(2): 361-368
    [2] (Guo Hongbao, Wang Bo, Jia Purong, et al.Mesoscopic damage behaviors of plainwoven ceramic composite under in-plane shear loading.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 361-368 (in Chinese))
    [3] Glass D.Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, United States, 2008: 2682
    [4] 杨强, 解维华, 彭祖军等. 热防护设计分析技术发展中的新概念与新趋势. 航空学报, 2015, 36(9): 2981-2991
    [4] (Yang Qiang, Xie Weihua, Peng Zujun, et al.New concepts and trends in development of thermal of protection design and analysis technology.Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2981-2991 (in Chinese))
    [5] Kelly A, Stearn RJ, McCartney LN. Composite materials of controlled thermal expansion.Composites Science and Technology, 2006, 66(2): 154-159
    [6] 李开元, 徐永东, 张立同等. 纤维编织结构对碳纤维增强碳化硅复合材料热膨胀和热扩散系数的影响. 硅酸盐学报, 2008, 36(11): 1564-1569
    [6] (Li Kaiyuan, Xu Yongdong, Zhang Litong, et al.Effects of fabric architectures on the thermal expansion coefficient and the thermal diffusivity of carbon fiber reinforced silicon carbide composites.Journal of The Chinese Ceramic Society, 2008, 36(11): 1564-1569 (in Chinese))
    [7] Gao Y, Zhou H, Liu M, et al.Mechanical and thermal properties of chemical vapor infiltration engineered 2D-woven and 3D-braided carbon silicate composites.Ceramics International, 2015, 41(9): 10949-10956
    [8] Tezvergil A, Lassila LVJ, Vallittu PK.The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites.Dental Materials, 2003, 19(6): 471-477
    [9] Pradere C, Batsale JC, Goyheneche JM, et al.Estimation of the transverse coefficient of thermal expansion on carbon fibers at very high temperature.Inverse Problems in Science and Engineering, 2007, 15(1): 77-89
    [10] Pan Z, Gu B, Sun B.Longitudinal compressive behavior of 3D braided composite under various temperatures and strain rates.Applied Physics A, 2014, 118(4): 1315-1337
    [11] Pochiraju K, Chou TW.Three-dimensionally woven and braided composites II: An experimental characterization.Polymer Composites, 1999, 20(6): 733-747
    [12] Dalmaz A, Ducret D, El Guerjouma R, et al.Elastic moduli of a 2.5D C-f/SiC composite: experimental and theoretical estimates.Composites Science and Technology, 2000, 60(6): 913-925
    [13] 胡更开, 郑泉水, 黄筑平. 复合材料有效弹性性质分析方法. 力学进展, 2001, 31(3): 361-393
    [13] (Hu Gengkai, Zheng Quanshui, Huang Zhuping.Analysis method of effective elastic properties of composite materials.Advances in Mechanics, 2001, 31(3): 361-393 (in Chinese))
    [14] Verpoest I, Lomov S.Virtual textile composites software: Integration with micro-mechanical, permeability and structural analysis.Composites Science and Technology, 2005, 65(15-16): 2563-2574
    [15] Gommer F, Brown LP, Brooks R.Quantification of mesoscale variability and geometrical reconstruction of a textile.Journal of Composite Materials, 2016, 50(23): 3255-3266
    [16] Mahmood A, Wang X, Zhou C.Modeling strategies of 3D woven composites: A review.Composite Structures, 2011, 93(8): 1947-1963
    [17] Dixit A, Mali HS.Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a Review. Mechanics of Composite Materials, 2013, 49(1): 1-20
    [18] Tan P, Tong L, Steven GP.Modelling for predicting the mechanical properties of textile composites-A review.Composites Part A: Applied Science and Manufacturing, 1997, 28(11): 903-922
    [19] Hallal A, Younes R, Fardoun F.Review and comparative study of analytical modeling for the elastic properties of textile composites.Composites Part B: Engineering, 2013, 50: 22-31
    [20] 刘书田, 程耿东. 基于均匀化理论的复合材料热膨胀系数预测方法. 大连理工大学学报, 1995, 35(5): 451-457
    [20] (Liu Shutian, Cheng Gengdong.A method for predicting thermal expansion coefficient of composite materials based on homogenization theory.Journal of Dalian University of Technology, 1995, 35(5): 451-457 (in Chinese))
    [21] 朱合华, 陈庆. 多相材料有效性能预测的高精度方法. 力学学报, 2017, 49(1): 41-47
    [21] (Zhu Hehua, Chen Qing.High accuracy method for predicting effective performance of polyphase materials.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47 (in Chinese))
    [22] 聂荣华, 矫桂琼, 王波. 二维编织C/SiC复合材料的热膨胀系数预测. 复合材料学报, 2008, 25(2): 109-114
    [22] (Nie Ronghua, Jiao Guiqiong, Wang Bo.Prediction of thermal expansion coefficient of 2d braided C/SiC composites.Acta Materiae Compositae Sinica, 2008, 25(2): 109-114 (in Chinese))
    [23] 卢子兴, 王成禹, 夏彪. 三维全五向编织复合材料弹性性能及热物理性能的有限元分析. 复合材料学报, 2013, 30(3): 160-167
    [23] (Lu Zixing, Wang Chengyu, Xia Biao.Finite element analysis of elastic properties and thermal physical properties of three-dimensional total five- dimensional braided composites.Acta Materiae Compositae Sinica, 2013, 30(3): 160-167 (in Chinese))
    [24] 孙志刚, 宋迎东, 高希光等. 细观结构对复合材料热膨胀系数的影响研究. 应用力学学报, 2004, 21(2): 146-150.
    [24] (Sun Zhigang, Song Yingdong, Gao Xiguang, et al.Study on the influence of microstructure on thermal expansion coefficient of composite materials.Chinese Journal of Applied Mechanics, 2004, 21(2): 146-150 (in Chinese))
    [25] Xu Y, Zhang W.A strain energy model for the prediction of the effective coefficient of thermal expansion of composite materials.Computational Materials Science, 2012, 53(1): 241-250
    [26] Lu Z, Wang C, Xia B, et al.Effect of interfacial properties on the thermophysical properties of 3D braided composites: 3D multiscale finite element study.Polymer Composites, 2014, 35(9): 1690-1700
    [27] Karadeniz ZH, Kumlutas D.A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials.Composite Structures, 2007, 78(1): 1-10
    [28] Gommer F, Brown LP, Wedgwood KCA.Analytical method using gamma functions for determining areas of power elliptical shapes for use in geometrical textile models.Composites Part A: Applied Science and Manufacturing, 2016, 81: 222-224
    [29] 汪海滨, 张卫红, 杨军刚等. 考虑孔隙和微裂纹缺陷的C/C-SiC编织复合材料等效模量计算. 复合材料学报, 2008, 25(3): 182-189
    [29] (Wang Haibin, Zhang Weihong, Yang Jungang, et al.Numerical computing of effective modulus of woven C/C-SiC composites including porosities and micro-cracks.Acta Materiae Compositae Sinica, 2008, 25(3): 182-189 (in Chinese))
    [30] Gitman IM, Askes H, Sluys LJ.Representative volume: Existence and size determination.Engineering Fracture Mechanics, 2007, 74(16): 2518-2534
    [31] Zhang C, Xu X.Finite element analysis of 3D braided composites based on three unit-cells models.Composite Structures, 2013, 98: 130-142
    [32] Bystrom J, Jekabsons N, Varna J.An evaluation of different models for prediction of elastic properties of woven composites.Composites Part B: Engineering, 2000, 31(1): 7-20
    [33] Wang HB, Zhang WH, Xu YJ, et al.Numerical computing and experimental validation of effective elastic properties of 2D multilayered C/SiC composites.Materials Science and Technology, 2008, 24(11): 1385-1398
    [34] Hallal A, Younes R, Fardoun F, et al.Improved analytical model to predict the effective elastic properties of 2.5D interlock woven fabrics composite.Composite Structures, 2012, 94(10): 3009-3028
    [35] Hu CX, Li HJ, Zhang SY, et al.Numerical simulation on thermal expansion coefficient of 3D braided C/C composites.Rare Metals, 2013, 33(1): 99-106
    [36] Mottershead JE, Link M, Friswell MI.The sensitivity method in finite element model updating: A tutorial.Mechanical Systems and Signal Processing, 2011, 25(7): 2275-2296
    [37] Schwaar M, Gmür T, Frieden J.Modal numerical-experimental identification method for characterising the elastic and damping properties in sandwich structures with a relatively stiff core.Composite Structures, 2012, 94(7): 2227-2236
    [38] Saito T, Parbery RD, Okuno S, et al.Parameter identification for aluminum honeycomb sandwich panels based on orthotropic Timoshenko beam theory.Journal of Sound and Vibration, 1997, 208(2): 271-287
    [39] Jiang D, Zhang DH, Fei QG, et al.An approach on identification of equivalent properties of honeycomb core using experimental modal data.Finite Elements in Analysis and Design, 2014, 90: 84-92
    [40] Soares CMM, De Freitas MM, Araújo AL, et al.Identification of material properties of composite plate specimens.Composite Structures, 1993, 25(1-4): 277-285
    [41] 龙凯, 王选, 韩丹. 基于多相材料的稳态热传导结构轻量化设计. 力学学报, 2017, 49(2): 359-366
    [41] (Long Kai, Wang Xuan, Han Dan.Structural light design for steady heat conduction using multi-material.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 359-366 (in Chinese))
    [42] Matter M, Gmur T, Cugnoni J, et al.Numerical-experimental identification of the elastic and damping properties in composite plates.Composite Structures, 2009, 90(2): 180-187
    [43] Matter M, Gmur T, Cugnoni J, et al.Identification of the elastic and damping properties in sandwich structures with a low core-to-skin stiffness ratio.Composite Structures, 2011, 93(2): 331-341
    [44] Rikards R, Chate A, Gailis G.Identification of elastic properties of laminates based on experiment design.International Journal of Solids and Structures, 2001, 38(30-31): 5097-5115
    [45] Rikards R, Abramovich H, Green T, et al.Identification of elastic properties of composite laminates.Mechanics of Advanced Materials and Structures, 2003, 10(4): 335-352.
    [46] Sepahvand K, Marburg S.Identification of composite uncertain material parameters from experimental modal data.Probabilistic Engineering Mechanics, 2014, 37: 148-153
    [47] Jiang D, Li YB, Fei QG, et al.Prediction of uncertain elastic parameters of a braided composite.Composite Structures, 2015, 126: 123-131
  • 期刊类型引用(1)

    1. 郭颖,李文杰,马建军,梁斌,熊春宝. 饱和多孔黏弹地基热-水-力耦合动力响应分析. 力学学报. 2021(04): 1081-1092 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  1443
  • HTML全文浏览量:  199
  • PDF下载量:  291
  • 被引次数: 3
出版历程
  • 收稿日期:  2018-03-18
  • 刊出日期:  2018-05-17

目录

    /

    返回文章
    返回