A LATTICE-BOLTZMANN METHOD SIMULATION OF THE HORIZONTAL OFFSET IN OBLIQUE COLUMN DEPOSITION OF ALUMINUM DROPLETS
-
摘要: 金属微滴沉积制造技术采用逐点堆砌方式成型, 为斜柱沉积提供无支撑制造方式, 具有高度灵活性. 本文针对铝液滴斜柱连续沉积过程, 建立格子玻尔兹曼模型进行数值模拟, 研究液滴在凝固表面上的水平偏移运动. 根据表面能充放过程, 沉积运动被划分为下落、快速扩张、慢速扩张、回弹4个阶段, 其受力状态由表面能、重力势能、动能和黏性耗散趋势得到. 液滴内部流动在扩张阶段中表现为滑动状态, 而在回弹阶段中表现为滚动状态. 液滴偏移运动的加速阶段主要发生在扩张阶段, 而偏移距离则在回弹阶段中产生. 扩张阶段的受力状态表明偏移运动的主要推动力为重力和毛细力. 随着液滴轴线距离的增大, 扩张阶段中的加速段时间缩短、速度峰值提高, 使水平偏移距离呈先增大后减小的趋势, 这种阶段化特征源于加速段时长和速度极大值的竞争关系. 不同沉积高度和固液浸润度下, 偏移距离均保持相同的演化趋势. 在相同的轴线距离下, 偏移距离随固液浸润度的增大而减小, 随沉积高度的增大而减小. 通过拟合水平偏移距离演化规律、优化扫描步距, 能够实现斜柱的均匀沉积, 并使倾角与理论结果一致.Abstract: The metal droplet deposition manufacturing technology adopts a point-by-point stacking method, which provide an unsupported manufacturing method for oblique column deposition with high flexibility. In this paper, a lattice Boltzmann model is established for simulating the continuous deposition process of the oblique column, and the horizontal displacement of the droplet on the solidification surface is studied. According to the charging and discharging process of surface energy, the deposition process is divided into four stages: falling, rapid expansion, slow expansion, and rebound. The forces on the deposited droplet are analyzed by the trend of surface energy, the gravitational potential energy, the kinetic energy, and the viscous dissipation. The internal flow of droplet is sliding in the expansion stage and rolling in the rebound stage. The internal flow of the droplet shows sliding state in the expansion stage and rolling state in the rebound stage. The acceleration of the deviation mainly occurs in the expansion stage, while the deviation distance occurs in the rebound stage. Combined with the forces in the expansion stage, it is concluded that the main driving forces of displacement are gravity and capillary force. With the increase of the droplet axial distance, the acceleration in expansion stage is shortened, and the peak of velocity is increased, so that the horizontal deviation is first increased and then decreased. This staged feature stems from the competitive relationship between the acceleration period and the maximum speed in the deviate motion. Under different deposition heights and solid-liquid wettability, the deviation distance maintains the same trend. Under a certain axial distance, the deviate distance decreases with the increasing solid-liquid wettability, or the increasing deposition height. The evolution tendency of the horizontal deviation distance is fitted, and the scanning step is optimized to realize the uniform deposition of the inclined column whose inclination angle is consistent with the theoretical result.
-
-
[1] 王强, 郑雄飞, 王赫然 等. 基于多喷头生物3D打印系统的管腔型结构构建. 机械设计与制造, 2019, 11: 265-268 (Wang Qiang, Zheng Xiongfei, Wang Heran, et al. Fabrication of lumen structure based on multi-nozzle biological 3D printing system. Machinery Design & Manufacture, 2019, 11: 265-268 (in Chinese))
[2] 方健文, 朱佩文, 邵毅. 3D 打印在眼科血管性疾病的应用进展. 国际眼科杂志, 2019, 19(9): 1499-1502 (Fang Jianwen, Zhu Peiwen, Shao Yi. Application progress of 3D printing technology in ophthalmic vascular disease. International Eye Science, 2019, 19(9): 1499-1502 (in Chinese))
[3] 芮敏, 郑欣, 张云庆 等. 3D打印多孔钛合金支架修复兔桡骨骨缺损. 中国组织工程研究, 2019, 23(18): 2789-2793 (Rui Min, Zheng Xin, Zhang Yunqing, et al. Three-dimensional printing porous titanium alloy scaffold repairs radial bone defect in rabbits. Chinese Journal of Tissue Engineering Research, 2019, 23(18): 2789-2793 (in Chinese))
[4] 刘建恒, 李明, 刘鐘阳 等. 3D 打印多孔矿化胶原硫酸钙仿生组织工程骨修复兔股骨髁包容性骨缺损的实验研究. 创伤外科杂志, 2020, 22(6): 408-413 (Liu Jianheng, Li Ming, Liu Zhongyang, et al. Experimental study on a new tissue engineering bone in repairing rabbit bone defect. Journal of Trauma Surgery, 2020, 22(6): 408-413 (in Chinese))
[5] 刘赵淼, 徐元迪, 逄燕. 压电式微滴按需喷射的过程控制和规律. 力学学报, 2019, 51(4): 1031-1042 (Liu Zhaomiao, Xu Yuandi, Pang Yan, et al. Study of process control on piezoelectric drop-on-demand ejection. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042 (in Chinese))
[6] 刘赵淼, 钟希祥, 杨刚 等. 气动式微滴喷射中液滴稳定生成的动力学特性研究. 机械工程学报, 2020, 56(23): 203-211 (Liu Zhaomiao, Zhong Xixiang, Yang Gang, et al. Study on the kinetic characteristics of droplet formation in pneumatic microdroplet injection. Journal of Mechanical Engineering, 2020, 56(23): 203-211 (in Chinese))
[7] Zhang DC, Qi LH, Luo J, et al. Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. International Journal of Machine Tools and Manufacture, 2017, 116: 18-24 [8] Fang M, Chandra S, Park CB. Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping Journal, 2008, 14(1): 44-52 [9] Lee TK, Kang TG, Yang JS, et al. Drop-on-demand solder droplet jetting system for fabricating microstructure. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(3): 202-210 [10] 李素丽, 杨来侠, 卢秉恒. 基于金属液滴水平重叠沉积工艺对表面形貌和内部质量优化研究. 稀有金属材料与工程, 2019, 8: 2460-2467 (Li Suli, Yang Laixia, Lu Bingheng. Process optimization of surface morphology and internal quality based on metal droplets horizontal lapped deposition. Rare Metal Materials and Engineering, 2019, 8: 2460-2467 (in Chinese))
[11] 李素丽, 杨来侠, 卢秉恒. 金属液滴垂直搭接成形工艺. 稀有金属材料与工程, 2019, 48(9): 2773-3776 (Li Suli, Yang Laixia, Lu Bingheng. Vertically lapped deposition process of metal droplet. Rare Metal Materials and Engineering, 2019, 48(9): 2773-3776 (in Chinese))
[12] Wang CH, Tsai HL, Wu YC, et al. Investigation of molten metal droplet deposition and solidification for 3D printing techniques. Journal of Micromechanics & Microengineering, 2016, 26(9): 095012 [13] Du J, Wei ZY. Numerical analysis of pileup process in metal microdroplet deposition manufacture. International Journal of Thermal Sciences, 2015, 96: 35-44 [14] Fang M, Chandra S, Park CB. Experiments on remelting and solidification of molten metal droplets deposited in vertical columns. Journal of Manufacturing & Engineering, 2007, 129(2): 461-466 [15] Zhang DC, Qi LH, Luo J, et al. Parametric mapping of linear deposition morphology in uniform metal droplet deposition technique. Journal of Materials Processing Technology, 2019, 264: 234-239 [16] Graham PJ, Farhangi MM, Dolatabadi A. Dynamics of droplet coalescence in response to increasing hydrophobicity. Physics of Fluids, 2012, 24(11): 175-181 [17] Dalili A, Chandra S, Mostaghimi J, et al. Formation of liquid sheets by deposition of droplets on a surface. Journal of Colloid & Interface Science, 2014, 418: 292-299 [18] Li R, Ashgriz N, Chandra S, et al. Drawback during deposition of overlapping molten wax droplets. Journal of Manufacturing Science and Engineering, 2008, 130(4): 1188-1188 [19] Ju JJ, Jin ZY, Zhang HH, et al. The impact and freezing processes of a water droplet on different cold spherical surfaces. Experimental Thermal and Fluid Science, 2018, 96: 430-440 [20] Tian DW, Tian YH, Wang CQ, et al. Modeling of an oblique impact of solder droplet onto a groove with the impact point to be offset from the groove surfaces interface. Journal of Materials Science, 2009, 44: 1772-1779 [21] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815-1820 [22] He X, Doolen GD. Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. Journal of Statistical Physics, 2002, 107(1-2): 309-328 [23] Shan XW, Doolen G. Multicomponent Lattice- Boltzmann model with interparticle interaction. Journal of Statistical Physics, 1995, 81(1-2): 379-393 [24] Huber C, Parmigiani A, Chopard B, et al. Lattice Boltzmann model for melting with natural convection. International Journal of Heat and Fluid Flow, 2008, 29(5): 1469-1480 [25] Noble DR, Torczynski JR. A lattice-Boltzmann method for partially saturated computational cells. International Journal of Modern Physics C, 1998, 9(8): 1189-1201 [26] Cook RK, Noble DR, Williams JR. A direct simulation method for particle-fluid systems. Engineering Computation, 2004, 21(2-4): 151-168 [27] 张艳勇, 陈宝明, 李佳阳. 基于LBM 研究骨架对相变材料融化蓄热的影响. 山东建筑大学学报, 2020, 35(2): 53-75 (Zhang Yanyong, Chen Baoming, Li Jiayang. Study on the influence of skeleton on the melting and heat storage of phase change materials based on LBM. Journal of Shandong Jianzhu University, 2020, 35(2): 53-75 (in Chinese))
[28] 高一倩, 柳毅, 李凌. 基于LBM的三角腔固液相变模拟. 储能科学与技术, 2020, 9(6): 1798-1805 (Gao Yiqian, Liu Yi, Li Ling. Numerical simulation of natural convection melting inside a triangular cavity using lattice Boltzmann method. Energy Storage Science and Technology, 2020, 9(6): 1798-1805 (in Chinese))
[29] 周俊杰, 冯妍弁, 蔡峻杰 等. 等离子弧焊接熔池相变过程的LBM模拟与验证. 工程热物理学报, 2019, 40(2): 442-449 (Zhou Junjie, Feng Yanhui, Cai Junjie, et al. Lattice Boltzmann simulation of phase transition process in a weld pool in plasma arc welding. Journal of Engineering Thermophysics, 2019, 40(2): 442-449 (in Chinese))
[30] Lu CL, Wang HN, Wang SY, et al. Effect of heating modes on melting performance of a solid-liquid phase change using lattice Boltzmann model. International Communications in Heat and Mass Transfer, 2019, 108: 104330 [31] Kasibhatla RR, Brüggemann D. Smoothed iterative enthalpy approach for solid-liquid phase change. International Journal of Thermal Sciences, 2020, 152: 106187 [32] Zhao J, Li X, Cheng P. Lattice Boltzmann simulation of a droplet impact and freezing on cold surfaces. International Communications in Heat and Mass Transfer, 2017, 87: 175-182 [33] Sun JJ, Gong JY, Li GJ. A lattice Boltzmann model for solidification of water droplet on cold flat plate. International Journal of Refrigeration, 2015, 59: 53-64 [34] Huang RZ, Wu HY. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change. Journal of Computational Physics, 2015, 294: 346-362 [35] 霍元平, 王军锋, 左子文 等. 滴状模式下液桥形成及断裂的电流体动力学特性研究. 力学学报, 2019, 51(2): 425-431 (Huo Yuanping, Wang Junfeng, Zuo Ziwen, et al. Electrohydrodynamic characteristics of liquid bridge formation at the dripping mode of electrosprays. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431 (in Chinese))
[36] 李桥忠, 陈木凤, 李游 等. 浸没边界-简化热格子Boltzmann方法研究及其应用. 力学学报, 2019, 51(2): 392-404 (Li Qiaozhong, Chen Mufeng, Li You, et al. Immersed boundary-simplified thermal lattice Boltzmann method for fluid-structure interaction problem with heat transfer and its application. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 392-404 (in Chinese))
[37] 尚超, 阳倦成, 张杰 等. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究. 力学学报, 2019, 51(2): 380-391 (Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of Galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391 (in Chinese))
-
期刊类型引用(3)
1. 刘祖锋. 基于IB-LBM的水下运动分析. 科技创新与应用. 2023(20): 26-32 . 百度学术
2. 鲁杰,李亚磊,徐龙,郝继光. 液滴撞击倾斜表面铺展研究. 实验流体力学. 2023(06): 42-50 . 百度学术
3. 佟莹,夏健,陈龙,薛浩天. 基于隐式扩散的直接力格式浸没边界格子Boltzmann方法. 力学学报. 2022(01): 94-105 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 1011
- HTML全文浏览量: 225
- PDF下载量: 145
- 被引次数: 3