EI、Scopus 收录
中文核心期刊

局域共振型声子晶体板缺陷态带隙及其俘能特性研究

卢一铭, 曹东兴, 申永军, 陈许敏

卢一铭, 曹东兴, 申永军, 陈许敏. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究[J]. 力学学报, 2021, 53(4): 1114-1123. DOI: 10.6052/0459-1879-20-436
引用本文: 卢一铭, 曹东兴, 申永军, 陈许敏. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究[J]. 力学学报, 2021, 53(4): 1114-1123. DOI: 10.6052/0459-1879-20-436
Lu Yiming, Cao Dongxing, Shen Yongjun, Chen Xumin. STUDY ON THE BANDGAPS OF DEFECT STATES AND APPLICATION OF ENERGY HARVESTING OF LOCAL RESONANT PHONONIC CRYSTAL PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1114-1123. DOI: 10.6052/0459-1879-20-436
Citation: Lu Yiming, Cao Dongxing, Shen Yongjun, Chen Xumin. STUDY ON THE BANDGAPS OF DEFECT STATES AND APPLICATION OF ENERGY HARVESTING OF LOCAL RESONANT PHONONIC CRYSTAL PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1114-1123. DOI: 10.6052/0459-1879-20-436
卢一铭, 曹东兴, 申永军, 陈许敏. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究[J]. 力学学报, 2021, 53(4): 1114-1123. CSTR: 32045.14.0459-1879-20-436
引用本文: 卢一铭, 曹东兴, 申永军, 陈许敏. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究[J]. 力学学报, 2021, 53(4): 1114-1123. CSTR: 32045.14.0459-1879-20-436
Lu Yiming, Cao Dongxing, Shen Yongjun, Chen Xumin. STUDY ON THE BANDGAPS OF DEFECT STATES AND APPLICATION OF ENERGY HARVESTING OF LOCAL RESONANT PHONONIC CRYSTAL PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1114-1123. CSTR: 32045.14.0459-1879-20-436
Citation: Lu Yiming, Cao Dongxing, Shen Yongjun, Chen Xumin. STUDY ON THE BANDGAPS OF DEFECT STATES AND APPLICATION OF ENERGY HARVESTING OF LOCAL RESONANT PHONONIC CRYSTAL PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1114-1123. CSTR: 32045.14.0459-1879-20-436

局域共振型声子晶体板缺陷态带隙及其俘能特性研究

基金项目: 1)国家自然科学基金(11972051);国家自然科学基金(11874011);石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室开放课题
详细信息
    作者简介:

    2)曹东兴, 教授, 主要研究方向: 振动能量采集. E-mail: caostar@bjut.edu.cn

    通讯作者:

    曹东兴

  • 中图分类号: O322

STUDY ON THE BANDGAPS OF DEFECT STATES AND APPLICATION OF ENERGY HARVESTING OF LOCAL RESONANT PHONONIC CRYSTAL PLATE

  • 摘要: 设计了一种由圆柱形散射体嵌入环氧树脂基体而组成的周期阵列局域共振型声子晶体板结构, 分析了其平直带区域以及缺陷态的能量集中特性, 并研究了其振动能量采集特性. 首先基于超元胞法结合有限元方法分析了5 $\times$ 5完美声子晶体结构和缺陷态声子晶体结构的能带曲线和能量传输特性; 考虑点缺陷局域共振声子晶体结构的能量集中特性, 利用压电材料代替超元胞中某点的散射体材料引入点缺陷, 分析其振动能量采集特性, 结果表明单个5 $\times$ 5点缺陷超胞结构共振频带较窄; 为提升俘能效率, 提出两种由3个具有不同缺陷态数量和构型的5 $\times$ 5超元胞结构并联而成的5 $\times$ 15声子晶体板结构, 机电耦合特性分析结果表明: 所提出的局域共振型声子晶体板结构克服了单个点缺陷超胞结构缺陷模过少、共振频带过窄的局限性, 拓宽了俘能器的工作频带, 提高了输出电压; 此外, 引入不同的缺陷态数量和构型, 可以进一步拓宽俘能带宽, 实现更好的俘能效果.
    Abstract: A local resonant phononic crystal plate, which is composed by quadrangular epoxy resin matrix embedded with cylindrical scatterers, is proposed to study the vibration energy harvesting performance. The bandgaps and energy concentration characteristics for the defect state structure are analyzed in detail. Firstly, the bandgap curve and energy transmission characteristics are analyzed for perfect and point defect phononic plate with 5 $\times$ 5 array structure based on supercell theory and finite element method. Considering the energy concentration characteristics of the point defect local resonance phononic crystal structure, piezoelectric material is used to replace the scatterer material of defect point, and the vibration energy characteristics are then analyzed. The results show that it has narrow resonance frequency band for the 5 $\times$ 5 point defect supercell structure. In order to improve the energy capture efficiency, two kind of new phononic crystal plate composed of three 5 $\times$ 5 supercells with different defect numbers and layout are proposed as the vibration energy harvester. According to the results of the electromechanical coupling analysis, it shows that the proposed local resonant phononic crystal plate overcomes the disadvantages of the single point defect supercell structure, such as too few defect modes and too narrow resonance frequency band. The working frequency band of the energy harvester is widened and the output voltage is increased. Additionally, it can further broaden the energy harvesting bandwidth and achieve better efficiency by introducing different number and configuration of defect states.
  • [1] Kushwaha MS, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993,71(13):2022-2025
    [2] 温熙森, 温激鸿, 郁殿龙 等. 声子晶体. 北京:国防工业出版社, 2009

    (Wen Xisen, Wen Jihong, Yu Dianlong, et al. Phononic Crystals. Beijing: National Defence Industry Press, 2009 (in Chinese))

    [3] Liu ZY, Zhang XX, Mao YW, et al. Locally resonant sonic materials. Science, 2000,289(5485):1734-1736
    [4] Sheng P, Zhang XX, Liu Z, et al. Locally resonant sonic materials. Physica B: Condensed Matter, 2003,338(1-4):201-205
    [5] 温激鸿, 王刚, 刘耀宗 等. 基于集中质量法的一维声子晶体弹性波带隙. 计算物理学报, 2004,53(10):3384-3388

    (Wen Jihong, Wang Gang, Liu Yaozong, et al. Lumped-mass method on calculation of elastic band gaps of one-dimensional phononic crystals. Acta Physica Sinica, 2004,53(10):3384-3388 (in Chinese))

    [6] 王刚, 温激鸿, 韩小云 等. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003,52(8):1943-1947

    (Wang Gang, Wen Jihong, Han Xiaoyun, et al. Finite difference time domain method for the stusy of band gap in two-dimensional phononic crystals. Acta Physica Sinica, 2003,52(8):1943-1947 (in Chinese))

    [7] 吴健, 白晓春, 肖勇 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性. 物理学报, 2016,65(6):209-219

    (Wu Jian, Bai Xiaochun, XiaoYong, et al. Low frequency band gaps and vibration reduction propeties of a multi-frequency locally resonant phononic plate. Acta Physica Sinica, 2016,65(6):209-219 (in Chinese))

    [8] El-Borgi S, Fernandes R, Rajendran P, et al. Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments. Journal of Sound and Vibration, 2020,488:115647
    [9] 王航, 王文强 . 一维黏弹性声子晶体的色散与耗散关系. 高压物理学报, 2020,34(6):1-11

    (Wang Hang, Wang Wenqiang. Dispersion and disspation relations of one-dimensional viscoelastic phononic crystals. Chinese Journal of High Pressure Physics, 2020,34(6):1-11 (in Chinese))

    [10] Sigalas MM. Elastic wave band gaps and defect states in two-dimensional composites. Journal of the Acoustical Society of America, 1997, 101(3): 1256-1261
    [11] Zou HX, Zhao LC, Gao QH, et al. Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Applied Energy, 2019,255:113871
    [12] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020,267:114902
    [13] Cao DX, Gao YH, Hu WH. Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta Mechanica Sinica, 2019,35:894-911
    [14] Huang D, Zhou S, Litak G. Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 2019,69:270-286
    [15] Zhou Z, Qin W, Du W, et al. Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mechanical Systems and Signal Processing, 2019,115:162-172
    [16] Cao DX, Xia W, Hu WH. Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam. Applied Mathematics and Mechanics (English Edition), 2019,40(12):1777-1790
    [17] Lu ZQ, Li K, Ding H, et al. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics (English Edition), 2019,40(1):167-180
    [18] 曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019,51(4):1148-1155

    (Cao Dongxing, Ma HongBo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics 2019 , 51(4):1148-1155 (in Chinese))

    [19] 曹东兴, 高彦辉, 张伟. 附磁阶梯变厚度悬臂梁压电俘能器的理论建模及分析. 固体力学学报, 2019,40(5):403-416

    (Cao Dongxing, Gao Yanhui, ZhangWei. Theoretical modelling and analysis of piezoelectric vibration energy harvester based on the stepped cantilever beam with variable thickness under magnetic force. Chinese Journal of Solid Mechanics, 2019,40(5):403-416 (in Chinese))

    [20] Chen Z, Guo B, Yang Y, et al. Metamaterials-based enhanced energy harvesting: A review. Physica B. Condensed Matter, 2014,438:1-18
    [21] Shin YC, Yoon H, Jo SH, et al. Phononic band gap of a quarter-wave stack for enhanced piezoelectric energy harvesting. International Journal of Mechanical Sciences, 2020,189:106003
    [22] Jo SH, Yoon H, Shin YC, et al. Designing a phononic crystal with a defect for energy localization and harvesting: Supercell size and defect location. International Journal of Mechanical Sciences, 2020,179:105670
    [23] Wang X, Sun H, Chen T, et al. Enhanced acoustic localization in the two-dimensional phononic crystals with slit tube defect. Physics Letters A, 2019,383(29):125918
    [24] Lv H, Tian X, Wang MY, et al. Vibration energy harvesting using a phononic crystal with point defect states. Applied Physics Letters, 2013,102(3):034103
    [25] 孙伟彬, 王婷, 孙小伟 等. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019,68(23):145-153

    (Sun Weibin, Wang Ting, Sun Xiaowei, et al. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, 2019,68(23):145-153 (in Chinese))

    [26] Chen Z, Yang Y, Lu Z, et al. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams. Physica B: Condensed Matter, 2013,410:5-12
    [27] Wang WC, Wu LY, Chen LW, et al. Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal. Smart Materials and Structures, 2010,19(4):045016
    [28] Assouar B, Oudich M, Zhou X. Sound insulation and energy harvesting based on acoustic metamaterial plate. Smart Structures, 2015,9438:94380U
    [29] Wu LY, Chen LW, Liu CM. Acoustic energy harvesting using resonant cavity of a sonic crystal. Applied Physics Letters, 2009,95(1):013506
    [30] Ma KJ, Ma KJ, Tan T, et al. Acoustic energy harvesting enhanced by locally resonant metamaterials. Smart Materials and Structures, 2020,29(7):075025
  • 期刊类型引用(17)

    1. 曹东兴,詹昌海,李莎莎,毛佳佳. 螺旋形压电悬臂梁多方向振动能量采集器设计及性能分析. 传感技术学报. 2024(04): 551-557 . 百度学术
    2. 罗文俊,张梁,郭文杰,洪显,李佳宝. 基于振幅放大机制的无砟轨道周期结构弯曲波调控研究. 华东交通大学学报. 2024(02): 25-32 . 百度学术
    3. 徐杰,郑辉,石承志,闫雪豹,文丕华. 含裂纹声子晶体能带分析的改进局部径向基函数配点法. 力学学报. 2024(07): 2063-2076 . 本站查看
    4. 陈康康,董兴建,彭志科,孟光. 拓扑超材料中弹性波模式分离及能量聚集. 力学学报. 2024(09): 2669-2680 . 本站查看
    5. 黄子龙,郑超禹,温晓东. 基于局域共振型声子晶体点缺陷态特性的低频振动能量回收研究. 兰州交通大学学报. 2024(05): 149-156+164 . 百度学术
    6. 冯青松,杨舟,郭文杰,张凌,李秋义. 周期性轨道结构的弯曲振动波控制. 中国科学:技术科学. 2023(04): 576-588 . 百度学术
    7. 林基艳,林书玉,徐洁,王升,钟兴华. 近周期声子晶体开孔结构的大辐射面夹心式纵振换能器的优化研究. 中国科学:物理学 力学 天文学. 2023(05): 64-76 . 百度学术
    8. 张利娟,张赛,沈佳敏,顾鑫. 基于梯度流固超晶格的宽频透声结构设计. 电子科技. 2023(09): 58-65 . 百度学术
    9. 孙彰,洪显,张洪. 基于能量法的橡胶浮置板轨道结构弹性波分析. 华东交通大学学报. 2023(06): 103-109 . 百度学术
    10. 张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 . 本站查看
    11. 薛坚,牛牧青,张文勇,陈立群. 二元复合材料板的自由振动:半解析法. 力学学报. 2022(07): 2041-2049 . 本站查看
    12. 王凯,周加喜,蔡昌琦,徐道临,文桂林. 低频弹性波超材料的若干进展. 力学学报. 2022(10): 2678-2694 . 本站查看
    13. 刘威,何泽银,陶平安,孙世政,王承登. 包裹层结构对轻质声子晶体低频振动带隙的影响. 固体力学学报. 2022(05): 658-668 . 百度学术
    14. 冯青松,杨舟,郭文杰,陆建飞,梁玉雄. 基于人工弹簧模型的周期结构带隙计算方法研究. 力学学报. 2021(06): 1684-1697 . 本站查看
    15. 陈楠,刘京睿,魏廷存. 面向压电振动能量俘获的电能管理电路综述. 力学学报. 2021(11): 2928-2940 . 本站查看
    16. 赵龙 ,陆泽琦 ,丁虎 ,陈立群 . 低频振动隔离和能量采集双功能超材料. 力学学报. 2021(11): 2972-2983 . 本站查看
    17. 李海涛,曹帆,任和,丁虎,陈立群. 流致振动能量收集的钝头体几何设计研究. 力学学报. 2021(11): 3007-3015 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  2030
  • HTML全文浏览量:  586
  • PDF下载量:  306
  • 被引次数: 30
出版历程
  • 收稿日期:  2020-04-24
  • 刊出日期:  2021-04-09

目录

    /

    返回文章
    返回