EI、Scopus 收录
中文核心期刊

湿润性对孔隙介质两相渗流驱替效率的影响

魏鹳举, 胡冉, 廖震, 陈益峰

魏鹳举, 胡冉, 廖震, 陈益峰. 湿润性对孔隙介质两相渗流驱替效率的影响[J]. 力学学报, 2021, 53(4): 1008-1017. DOI: 10.6052/0459-1879-20-403
引用本文: 魏鹳举, 胡冉, 廖震, 陈益峰. 湿润性对孔隙介质两相渗流驱替效率的影响[J]. 力学学报, 2021, 53(4): 1008-1017. DOI: 10.6052/0459-1879-20-403
Wei Guanju, Hu Ran, Liao Zhen, Chen Yifeng. EFFECTS OF WETTABILITY ON DISPLACEMENT EFFICIENCY OF TWO-PHASE FLOW IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1008-1017. DOI: 10.6052/0459-1879-20-403
Citation: Wei Guanju, Hu Ran, Liao Zhen, Chen Yifeng. EFFECTS OF WETTABILITY ON DISPLACEMENT EFFICIENCY OF TWO-PHASE FLOW IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1008-1017. DOI: 10.6052/0459-1879-20-403
魏鹳举, 胡冉, 廖震, 陈益峰. 湿润性对孔隙介质两相渗流驱替效率的影响[J]. 力学学报, 2021, 53(4): 1008-1017. CSTR: 32045.14.0459-1879-20-403
引用本文: 魏鹳举, 胡冉, 廖震, 陈益峰. 湿润性对孔隙介质两相渗流驱替效率的影响[J]. 力学学报, 2021, 53(4): 1008-1017. CSTR: 32045.14.0459-1879-20-403
Wei Guanju, Hu Ran, Liao Zhen, Chen Yifeng. EFFECTS OF WETTABILITY ON DISPLACEMENT EFFICIENCY OF TWO-PHASE FLOW IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1008-1017. CSTR: 32045.14.0459-1879-20-403
Citation: Wei Guanju, Hu Ran, Liao Zhen, Chen Yifeng. EFFECTS OF WETTABILITY ON DISPLACEMENT EFFICIENCY OF TWO-PHASE FLOW IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1008-1017. CSTR: 32045.14.0459-1879-20-403

湿润性对孔隙介质两相渗流驱替效率的影响

基金项目: 1)国家重点研发计划课题(2019YFC0605001);中央高校基本科研业务费专项资金(2042019kf0217)
详细信息
    作者简介:

    2)胡冉, 教授, 主要研究方向: 多孔裂隙介质多相渗流细观机理、宏观规律及过程控制. E-mail: whuran@whu.edu.cn

    通讯作者:

    胡冉

  • 中图分类号: O363.2,V211.1+7

EFFECTS OF WETTABILITY ON DISPLACEMENT EFFICIENCY OF TWO-PHASE FLOW IN POROUS MEDIA

  • 摘要: 孔隙介质中多相渗流的驱替效率对二氧化碳封存效率和石油采收率具有决定性影响, 是实际工程调控中的一个关键指标. 湿润性是影响多相渗流驱替模式及其效率的一个重要因素. 本文通过微流体模型-显微镜-高速相机可视化实验平台, 对基于真实砂岩孔隙结构的微流体模型进行湿润性修饰, 开展了5种流量和2种湿润性的两相驱替可视化实验, 研究了湿润性对砂岩孔隙结构中两相渗流驱替模式及其效率的重要影响. 实验结果表明: 随着流速的增大, 两相渗流驱替模式由毛细指流向稳定流发生转变; 在低流速条件下, 由于毛细力的主导效应, 亲水性介质中指进的宽度和被驱替流体团簇的数目均小于疏水性介质, 而被驱替流体团簇的最大半径、平均半径和方差均大于疏水性介质. 实验结果还证实了亲水性介质中由于单支优势通道和"绕流"现象的发生, 驱替效率显著小于疏水性介质. 最后, 通过考虑接触角效应对毛细管数进行修正, 建立了考虑湿润性影响的驱替效率和毛细管数之间的统一关系式, 为不同湿润性条件下驱替效率的预测提供了一种潜在方法.
    Abstract: Displacement efficiency and displacement pattern of multiphase flow in porous media have a profound influence on many geo-energy applications such as geologic CO$_{2}$ sequestration and enhanced oil recovery. Wettability is one of the most important factors affecting the displacement pattern and displacement efficiency of multiphase flow in porous media. Here, we combined the glass microfluidics, inverted microscope and high speed CMOS camera to set up a visualization experimental system and modified the surface wettability of the glass microfluidics by using the silanization treatment and piranha solution. Pore-scale visualization displacement experiments were conducted on five flow rates and two wetting conditions (hydrophilic and hydrophobic conditions) in glass microfluidics which are fabricated from the pore structure of natural sandstone. Experimental results show that the displacement pattern shifts from capillary fingering to compact displacement pattern both in the hydrophilic and hydrophobic media as the flow rate increases. Under lower flow rates, the capillary force plays the dominant role in the fluid invasion processes. The invasion finger width and the number of air clusters in hydrophilic media are both smaller than those in the hydrophobic media, but the maximum air cluster radius, the average cluster radius and the standard deviation of cluster radius are all greater under hydrophilic conditions. The results also demonstrate that the displacement efficiency under hydrophilic condition is significantly lower than that of hydrophobic conditions due to single-channel flow and "by pass" flow phenomena which both only occur in hydrophilic media. Finally, a modified capillary number was introduced in order to consider the role of wettability (contact angle) under favourable displacement. Then, a relationship between the displacement efficiency and the modified capillary number was proposed, which provides a potential and useful method for the prediction of displacement efficiency under different wetting conditions during favourable displacement.
  • [1] 孙冬梅, 朱岳明, 张明进. 降雨入渗过程的水-气二相流模型研究. 水利学报, 2007(2):150-156

    (Sun Dongmei, Zhu Yueming, Zhang Mingjin. Water-air two-phase flow model for numerical analysis of rainfall infiltration. Journal of Hydraulic Engineering, 2007(2):150-156 (in Chinese))

    [2] Pettersson K, Maggiolo D, Sasic S, et al. On the impact of porous media microstructure on rainfall infiltration of thin homogeneous green roof growth substrates. Journal of Hydrology, 2020,582:124286
    [3] 胡五龙, 刘国峰, 晏石林 等. 土壤水分布的孔隙尺度格子玻尔兹漫模拟研究. 力学学报, 2021,53(2):568-579

    (Hu Wulong, Liu Guofeng, Yan Shilin, et al. Pore-scale lattice Boltzmann modelling of soil water distribution. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):568-579 (in Chinese))

    [4] 施小清, 吴吉春, 姜蓓蕾 等. 包气带中降雨入渗单相流和二相流数值模拟对比. 工程勘察, 2011,39(1):38-45

    (Shi Xiaoqing, Wu Jichun, Jiang Beilei, et al. Comparison of numerical simulation based on water-gas two phase flow and single phase flow for the seepage in vadose zone. Geotechnical Investigation & Surveying, 2011,39(1):38-45 (in Chinese))

    [5] Kacem M, Esrael D, Boeije CS, et al. Multiphase flow model for NAPL infiltration in both the unsaturated and saturated zones. Journal of Environmental Engineering, 2019,145(11):04019072
    [6] 张烨, 施小清, 邓亚平 等. 结合蒸汽和空气注入修复多孔介质中DNAPL污染物的多目标多相流模拟优化. 水文地质工程地质, 2015,42(5):140-148

    (Zhang Ye, Shi Xiaoqing, Deng Yapping, et al. Multi-objective multi-phase optimization with steam and air co-injection for DNAPL contaminant remediation in porous media. Hydogeology & Engineering Geology, 2015,42(5):140-148 (in Chinese))

    [7] 李淑霞, 郭尚平, 陈月明 等. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议. 力学学报, 2020,52(3):828-842

    (Li Shuxia, Guo Shangping, Chen Yueming, et al. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):828-842 (in Chinese))

    [8] 王者超, 李崴, 刘杰 等. 地下储气库发展现状与安全事故原因综述. 隧道与地下工程灾害防治, 2019,1(2):49-58

    (Wang Zhechao, Li Wei, Liu Jie, et al. A review on state-of-the-art of underground gas storage and causes of typical accidents. Hazard Control in Tunnelling and Underground Engineering, 2019,1(2):49-58 (in Chinese))

    [9] 蔡建超, 夏宇轩, 徐赛 等. 含水合物沉积物多相渗流特性研究进展. 力学学报, 2020,52(1):208-223

    (Cai Jianchao, Xia Yuxuan, Xu Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):208-223 (in Chinese))

    [10] Lin D, Wang J, Yuan B, et al. Review on gas flow and recovery in unconventional porous rocks. Advances in Geo-Energy Research, 2017,1(1):39-53
    [11] 胡冉, 陈益峰, 万嘉敏 等. 超临界CO$_{2}$-水两相流与CO$_{2}$毛细捕获: 微观孔隙模型实验与数值模拟研究. 力学学报, 2017,49(3):638-648

    (Hu Ran, Chen Yifeng, Wan Jiamin, et al. Supercritical CO$_{2}$ water displacements and CO$_{2}$ capillary trapping: Micromodel experiment and numerical simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):638-648 (in Chinese))

    [12] Zhang L, Soong Y, Dilmore R, et al. Numerical simulation of porosity and permeability evolution of Mount Simon sandstone under geological carbon sequestration conditions. Chemical Geology, 2015,403:1-12
    [13] Xu T, Senger R, Finsterle S. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects. Applied Geochemistry, 2008,23(12):3423-3433
    [14] Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 1988,189:165-187
    [15] Liu Y, Iglauer S, Cai J, et al. Local instabilities during capillary-dominated immiscible displacement in porous media. Capillarity, 2019,2(1):1-7
    [16] Hu R, Wan J, Yang Z, et al. Wettability and flow rate impacts on immiscible displacement: A theoretical model. Geophysical Research Letters, 2018,45(7):3077-3086
    [17] 蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2012,42(6):735-754

    (Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012,42(6):735-754 (in Chinese))

    [18] 王盟浩, 熊友明, 刘理明 等. 非均质多孔介质中剪切稀释流的非混相驱替研究. 岩石力学与工程学报, 2019,38(S2):3783-3789

    (Wang Menghao, Xiong Youming, Liu Liming, et al. Immiscible displacement of a shear-thinning fluid in heterogeneous porous media. Chinese Journal of Rock Mechanics and Engineering, 2019,38(S2):3783-3789 (in Chinese))

    [19] 鞠杨, 王金波, 高峰 等. 变形条件下孔隙岩石CH$_{4}$微细观渗流的Lattice Boltzmann模拟. 科学通报, 2014,59(22):2127-2136

    (Ju Yang, Wang Jinbo, Gao Feng, et al. Lattice-Boltzmann simulation of microscale CH$_{4}$ flow in porous rock subject to force-induced deformation. Chin Sci Bull, 2014,59:3292-3303 (in Chinese))

    [20] Lu NB, Pahlavan AA, Browne CA, et al. Forced imbibition in stratified porous media. Physical Review Applied, 2020,14(5):054009
    [21] Hu R, Lan T, Wei GJ, et al. Phase diagram of quasi-static immiscible displacement in disordered porous media. Journal of Fluid Mechanics, 2019,875:448-475
    [22] Mehmani A, Kelly S, Torres-Verdín C, et al. Residual oil saturation following gas injection in sandstones: Microfluidic quantification of the impact of pore-scale surface roughness. Fuel, 2019,251:147-161
    [23] Odier C, Levaché B, Santanach-Carreras E, et al. Forced imbibition in porous media: A fourfold scenario. Physical Review Letters, 2017,119(20):208005
    [24] Ayaz M, Toussaint R, Sch?fer G, et al. Gravitational and finite-size effects on pressure saturation curves during drainage. Water Resources Research, 2020, 56(10): e2019WR026279
    [25] Chen YF, Wu DS, Fang S, et al. Experimental study on two-phase flow in rough fracture: Phase diagram and localized flow channel. International Journal of Heat and Mass Transfer, 2018,122:1298-1307
    [26] Jiang F, Tsuji T. Impact of interfacial tension on residual CO$_{2}$ clusters in porous sandstone. Water Resources Research, 2015,51(3):1710-1722
    [27] Xu F, Chen Q, Ma M, et al. Displacement mechanism of polymeric surfactant in chemical cold flooding for heavy oil based on microscopic visualization experiments. Advances in Geo-Energy Research, 2020,4(1):77-85
    [28] 陈小龙, 李宜强, 廖广志 等. 减氧空气重力稳定驱驱替机理及与采收率的关系. 石油勘探与开发, 2020,47(4):780-788

    (Chen Xiaolong, Li Yiqiang, Liao Guangzhi, et al. Experimental investigation on stable displacement mechanism and oil recovery enhancement of oxygen-reduced air assisted gravity drainage. Petroleum Exploration and DevelopmenT, 2020,47(4):780-788 (in Chinese))

    [29] 刘日成, 蒋宇静, 李博 等. 岩体裂隙网络非线性渗流特性研究. 岩土力学, 2016,37(10):2817-2824

    (Liu Richeng, Jiang Yujing, Li Bo, et al. Nonlinear seepage behaviors of fluid in fracture networks. Rock and Soil Mechanics, 2016,37(10):2817-2824 (in Chinese))

    [30] Iglauer S, Pentland CH, Busch A. CO$_{2}$ wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 2015,51(1):729-774
    [31] Arif M, Abu-Khamsin SA, Iglauer S. Wettability of rock/CO$_{2}$/brine and rock/oil/CO$_{2}$-enriched-brine systems: critical parametric analysis and future outlook. Advances in Colloid and Interface Science, 2019,268:91-113
    [32] Cieplak M, Robbins MO. Dynamical transition in quasistatic fluid invasion in porous media. Physical Review Letters, 1988,60(20):2042
    [33] Cieplak M, Robbins MO. Influence of contact angle on quasistatic fluid invasion of porous media. Physical Review B, 1990,41(16):11508
    [34] Holtzman R, Segre E. Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Physical Review Letters, 2015,115(16):164501
    [35] Jung M, Brinkmann M, Seemann R, et al. Wettability controls slow immiscible displacement through local interfacial instabilities. Physical Review Fluids, 2016,1(7):074202
    [36] Singh K, Scholl H, Brinkmann M, et al. The role of local instabilities in fluid invasion into permeable media. Scientific Reports, 2017,7(1):1-11
    [37] Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 2016,113(37):10251-10256
    [38] Chaudhary K, Bayani CM, Wolfe WW, et al. Pore-scale trapping of supercritical CO$_{2}$ and the role of grain wettability and shape. Geophysical Research Letters, 2013,40(15):3878-3882
    [39] Spiteri EJ, Juanes R, Blunt MJ, et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics. Spe Journal, 2008,13(3):277-288
    [40] 李朝鑫, 武晓刚, 孙玉琴 等. 微流控通道内细胞及其初级纤毛的力传导行为. 力学学报, 2021,53(1):260-277

    (Li Chaoxin, Wu Xiaogang, Sun Yuqin, et al. Mechanotransduction of the cell and its primary cilium in the microfluidic channel. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):260-277 (in Chinese))

    [41] Whitesides GM. The origins and the future of microfluidics. Nature, 2006,442(7101):368-373
    [42] Bartolo D, Degré G, Nghe P, et al. Microfluidic stickers. Lab on a Chip, 2008,8(2):274-279
    [43] Wang YP, Yuan K, Li QL, et al. Preparation and characterization of poly (N-isopropylacrylamide) films on a modified glass surface via surface initiated redox polymerization. Materials Letters, 2005,59(14-15):1736-1740
    [44] 王迎军, 赵迎刚, 卢玲 等. 用硅烷偶联剂处理生物玻璃表面及其复合支架的制备. 硅酸盐学报, 2006,35(7):836-841

    (Wang Yingjun, Zhao Yinggang, Lu Ling, et al. Surface treatment of bioglass with silane coupling agent and its preparation for composite scaffolds. Journal of the Chinese Ceramic Society, 2006,35(7):836-841 (in Chinese))

    [45] Schmidt SW, Christ T, Glockner C, et al. Simple coupling chemistry linking carboxyl-containing organic molecules to silicon oxide surfaces under acidic conditions. Langmuir, 2010,26(19):15333-15338
    [46] 杜高翔, 郑水林, 李杨. 超细水镁石的硅烷偶联剂表面改性. 硅酸盐学报, 2005,33(5):659-664

    (Du Gaoxiang, Zheng Shuilin, Li Yang. Surface modification of ultra-fine brucite powder by silane coupling agent. Journal of the Chinese Ceramic Society, 2005,33(5):659-664 (in Chinese))

    [47] Krevor S, Blunt MJ, Benson SM, et al. Capillary trapping for geologic carbon dioxide storage——From pore scale physics to field scale implications. International Journal of Greenhouse Gas Control, 2015,40:221-237
    [48] Hu R, Wan J, Kim Y, et al. Wettability impact on supercritical CO$_{2}$ capillary trapping: Pore-scale visualization and quantification. Water Resources Research, 2017,53(8):6377-6394
    [49] Zhang C, Oostrom M, Wietsma TW, et al. Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy & Fuels, 2011,25(8):3493-3505
    [50] Pak T, Butler IB, Geiger S, et al. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media. Proceedings of the National Academy of Sciences, 2015,112(7):1947-1952
    [51] Wardlaw NC, McKellar M. Oil blob populations and mobilization of trapped oil in unconsolidated packs. The Canadian Journal of Chemical Engineering, 1985,63(4):525-532
    [52] Li Y, Blois G, Kazemifar F, et al. High-speed quantification of pore-scale multiphase flow of water and supercritical CO$_{2}$ in 2-D heterogeneous porous micromodels: Flow regimes and interface dynamics. Water Resources Research, 2019,55(5):3758-3779
    [53] Cao SC, Dai S, Jung J. Supercritical CO$_{2}$ and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies. International Journal of Greenhouse Gas Control, 2016,44:104-114
    [54] Lan T, Hu R, Yang Z, et al. Transitions of fluid invasion patterns in porous media. Geophysical Research Letters, 2020, 47(20): e2020GL089682
  • 期刊类型引用(12)

    1. 林强伟,朱永建,罗亚飞,李鹏,王平,李豹. 煤岩裂隙网络水气运移特性数值模拟研究. 矿业科学学报. 2025(01): 125-136+150 . 百度学术
    2. 谢平,王海柱,王斌,张云鹏,徐润滋,麦汉,董卓鑫. 基于微流控模型的超临界CO_2压裂返排微观机制. 西安石油大学学报(自然科学版). 2025(03): 57-65+74 . 百度学术
    3. 田键,康毅力,游利军,贾钠,王艺钧,秦朝中. 致密砂岩孔隙尺度下气-水界面动态演化可视化实验研究. 力学学报. 2024(03): 862-873 . 本站查看
    4. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 . 本站查看
    5. 肖霞,胡世丽,王观石,王国涛,安厚睿. 孔隙率对多孔介质模型内水-气两相驱替规律的影响. 中国有色金属学报. 2024(05): 1757-1767 . 百度学术
    6. 赵海军,魏爱华,彭昊,张凯,陈媛瑶. 非均质多孔介质超临界CO_2非混相驱替特征及机理研究. 工程地质学报. 2024(05): 1825-1837 . 百度学术
    7. 胡冉 ,钟翰贤 ,陈益峰 . 变开度岩体裂隙多相渗流实验与有效渗透率模型. 力学学报. 2023(02): 543-553 . 本站查看
    8. 张子翼,胡冉,廖震,陈益峰. 重力条件下粗糙裂隙溶蚀过程的可视化试验研究. 水文地质工程地质. 2023(02): 178-188 . 百度学术
    9. 贾昊卫,于海洋,谢非矾,袁舟,徐克,汪洋. CO_2微气泡溶解动力学及提高采收率机理研究. 力学学报. 2023(03): 755-764 . 本站查看
    10. 蔡沛辰,阙云,谢秀栋,薛斌. 考虑壁面湿润性的多孔介质两相渗流特性数值研究. 武汉大学学报(工学版). 2023(04): 414-420 . 百度学术
    11. 李东奇,杨志兵,张乐,胡冉,陈益峰. 空气-悬浮液驱替条件下颗粒边壁滞留研究. 力学学报. 2023(11): 2531-2538 . 本站查看
    12. 吕鹏飞,赵文杰,刘锋. 基于微焦点CT技术的孔隙尺度多相渗流实验系统开发. 实验室研究与探索. 2022(06): 11-15 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  2276
  • HTML全文浏览量:  522
  • PDF下载量:  347
  • 被引次数: 23
出版历程
  • 收稿日期:  2020-11-29
  • 刊出日期:  2021-04-09

目录

    /

    返回文章
    返回