EI、Scopus 收录
中文核心期刊

梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟

徐波, 康国政

徐波, 康国政. 梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟[J]. 力学学报, 2021, 53(3): 802-812. DOI: 10.6052/0459-1879-20-397
引用本文: 徐波, 康国政. 梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟[J]. 力学学报, 2021, 53(3): 802-812. DOI: 10.6052/0459-1879-20-397
Xu Bo, Kang Guozheng. PHASE FIELD SIMULATION ON THE SUPER-ELASTICITY AND SHAPE MEMORY EFFECT OF GRADIENT NANOCRYSTALLINE NiTi SHAPE MEMORY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 802-812. DOI: 10.6052/0459-1879-20-397
Citation: Xu Bo, Kang Guozheng. PHASE FIELD SIMULATION ON THE SUPER-ELASTICITY AND SHAPE MEMORY EFFECT OF GRADIENT NANOCRYSTALLINE NiTi SHAPE MEMORY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 802-812. DOI: 10.6052/0459-1879-20-397
徐波, 康国政. 梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟[J]. 力学学报, 2021, 53(3): 802-812. CSTR: 32045.14.0459-1879-20-397
引用本文: 徐波, 康国政. 梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟[J]. 力学学报, 2021, 53(3): 802-812. CSTR: 32045.14.0459-1879-20-397
Xu Bo, Kang Guozheng. PHASE FIELD SIMULATION ON THE SUPER-ELASTICITY AND SHAPE MEMORY EFFECT OF GRADIENT NANOCRYSTALLINE NiTi SHAPE MEMORY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 802-812. CSTR: 32045.14.0459-1879-20-397
Citation: Xu Bo, Kang Guozheng. PHASE FIELD SIMULATION ON THE SUPER-ELASTICITY AND SHAPE MEMORY EFFECT OF GRADIENT NANOCRYSTALLINE NiTi SHAPE MEMORY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 802-812. CSTR: 32045.14.0459-1879-20-397

梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟

基金项目: 1) 国家自然科学基金资助项目(11532010)
详细信息
    作者简介:

    2) 康国政, 教授, 主要研究方向: 材料的循环本构关系、疲劳与断裂. E-mail: guozhengkang@swjtu.edu.cn

    通讯作者:

    康国政

  • 中图分类号: O341

PHASE FIELD SIMULATION ON THE SUPER-ELASTICITY AND SHAPE MEMORY EFFECT OF GRADIENT NANOCRYSTALLINE NiTi SHAPE MEMORY ALLOY

  • 摘要: 通过建立考虑两个马氏体变体的二维相场模型,对梯度纳米晶镍钛(NiTi)合金系统的超弹性、单程和应力辅助双程形状记忆过程进行了模拟和预测.模拟结果显示: 在梯度纳米晶NiTi合金的超弹性过程中,较粗晶粒的区域保留了传统粗晶的马氏体相变和逆相变特征,即局部马氏体带的形核-扩展和缩减-消失, 而随着晶粒尺寸的减小,细晶粒区域表现为均匀相变的特点, 即无局部马氏体带产生; 此外,在超弹性和形状记忆过程中,马氏体相变和重取向都首先在较粗晶粒区域开始并逐步向细晶粒区域传播,而逆相变则相反.马氏体相变和重取向的逐步扩展使梯度纳米晶NiTi合金的应力-应变和应变-温度曲线呈现出“硬化状”,其可归因于纳米多晶NiTi合金中马氏体相变对晶粒尺寸的依赖性,即随着晶粒尺寸的减小, 相变或重取向壁垒逐渐增大,马氏体相变或重取向的形核、扩展越来越困难. 可见,梯度纳米晶结构具有比传统均匀晶粒尺寸NiTi合金更宽的相变应力区间、重取向应力区间和相变温度区间,可显著提高该合金非弹性变形的可控性.
    Abstract: A two-dimensional phase field model was established to simulate and predict the super-elasticity, one-way and stress-assisted two-way shape memory effects of gradient nanocrystalline NiTi shape memory alloy system. The simulated results show that in the super-elastic process of gradient nanocrystalline NiTi alloy, the characteristics of martensite transformation and its reverse in the traditional coarse-grained NiTi alloy, i.e., nucleation-expansion and reduction-disappearance of local martensite band, are retained in the relatively coarse-grained region, but with the decrease of grain size, a homogeneous transformation mode, i.e., without the formation of local martensite band, is observed in the fine-grained region; moreover, in the super-elastic and shape memory processes, both the martensite transformation and reorientation originate from the relatively coarse-grained region and then propagate progressively to the fine-grained one, while the reverse transformation is opposite. The gradual propagations of martensite transformation and reorientation make the stress-strain and strain-temperature curves of gradient nanocrystalline NiTi alloy show a remarkable “hardening”, which can be attributed to the grain size-dependence of martensite transformation and re-orientation in nanocrystalline NiTi alloy, i.e., with decreasing the grain size, the transformation or re-orientation barrier increases gradually, and the nucleation and expansion of martensite transformation or re-orientation becomes more and more difficult. It is concluded that the gradient nanocrystalline structure has wider transformation stress, reorientation stress and transformation temperature windows than the traditional uniform-grained NiTi alloys, which means that the controllability of the inelastic deformation of such alloy is significantly improved.
  • [1] Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Materials and Design, 2014,56:1078-1113
    [2] 牛豪杰, 林成新. 形状记忆合金的应用现状综述. 天津理工大学学报, 2020,36(4):1-6

    (Niu Haojie, Lin Chengxin. Review of shape memory alloy application status. Journal of Tianjin University of Technology, 2020,36(4):1-6 (in Chinese))

    [3] Ahadi A, Sun Q. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Materialia, 2014,76:186-197
    [4] Yin H, He Y, Moumni Z, et al. Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. International Journal of Fatigue, 2016,88:166-177
    [5] Chen J, Yin H, Sun Q. Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys. Acta Materialia, 2020,195:141-150
    [6] Waitz T, Kazykhanov V, Karnthaler H. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Materialia, 2004,52:137-147
    [7] Ahadi A, Sun Q. Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi — effects of grain size. Applied Physics Letters, 2013,103:021902
    [8] Ahadi A, Sun Q. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Materialia, 2015,90:272-281
    [9] Mahmud AS, Liu Y, Nam T. Gradient anneal of functionally graded NiTi. Smart Materials and Structures, 2008,17:015031
    [10] Yang S, Kang S, Lim Y, et al. Temperature profiles in a Ti-45Ni-5Cu (at%) shape memory alloy developed by the Joule heating. Journal of Alloys and Compounds, 2010,490:L28-L32
    [11] Park SH, Lee JH, Nam TH, et al. Effect of proportional control treatment on transformation behavior of Ti-50.9 at.% Ni shape memory alloys. Journal of Alloys and Compounds, 2013,577S:S168-S174
    [12] Huang K, Sun Q, Yu C, et al. Deformation behaviors of gradient nanostructured superelastic NiTi shape memory alloy. Materials Science & Engineering A, 2020,786:139389
    [13] Chen J, Wu Y, Yin H. In situ multi-field investigation of grain size effects on the rate-dependent thermomechanical responses of polycrystalline superelastic NiTi. Materials Letters, 2020,259:126845
    [14] Zhong Y, Zhu T. Phase-field modeling of martensitic microstructure in NiTi shape memory alloys. Acta Materialia, 2014,75:337-347
    [15] Esfahani SE, Ghamarian I, Levitas VI, et al. Microscale phase field modeling of the martensitic transformation during cyclic loading of NiTi single crystal. International Journal of Solids and Structures, 2018,146, 80-96
    [16] Zhu J, Wang D, Gao Y, et al. Linear-superelastic metals by controlled strain release via nanoscale concentration-gradient engineering. Materials Today, 2020,33:17-23
    [17] Li X, Su Y. A phase-field study of the martensitic detwinning in NiTi shape memory alloys under tension or compression. Acta Mechanica, 2020,231(4):1539-1557
    [18] Xu B, Kang G, Kan Q, et al. Phase field simulation to one-way shape memory effect of NiTi shape memory alloy single crystal. Computational Materials Science, 2019,161:276-292
    [19] Xu B, Kang G, Yu C, et al. Phase field simulation on the grain size dependent super-elasticity and shape memory effect of nanocrystalline NiTi shape memory alloys. International Journal of Engineering Science, 2020,156:103373
    [20] Xie X, Kang G, Kan Q, et al. Phase-field theory based finite element simulation on thermo-mechanical cyclic deformation of polycrystalline super-elastic NiTi shape memory alloy. Computational Materials Science, 2020,184:109899
    [21] Ahluwalia R, Lookman T, Saxena A, et al. Landau theory for shape memory polycrystals. Acta Materialia, 2004,52:209-218
    [22] Levitas VI, Lee DW. Athermal resistance to interface motion in the phase-field theory of microstructure evolution. Physics Review Letters, 2007,99:245701
    [23] Dhote RP, Melnik RVN, Zu J. Dynamic thermomechanical coupling and size effects in finite shape memory alloy nanostructures. Computational Materials Science, 2012,63:105-117
    [24] Sun Y, Luo J, Zhu J, et al. A non-isothermal phase field study of the shape memory effect and pseudoelasticity of polycrystalline shape memory alloys. Computational Materials Science, 2019,167:65-76
    [25] Cissé C, Zaeem MA. An asymmetric elasto-plastic phase-field model for shape memory effect, pseudoelasticity and thermomechanical training in polycrystalline shape memory alloys. Acta Materialia, 2020,201:580-595
    [26] Yeddu HK, Malik A, ?gren J, et al. Three-dimensional phase-field modeling of martensitic microstructure evolution in steels. Acta Materialia, 2012,60:1538-1547
    [27] Artemev A, Jin Y, Khachaturyan AG. Three-dimensional phase field model of proper martensitic transformation. Acta Materialia, 2001,49:1165-1177
    [28] Cui S, Wan J, Zuo X, et al. Three-dimensional, non-isothermal phase-field modeling of thermally and stress-induced martensitic transformations in shape memory alloys. International Journal of Solids and Structures, 2017,109:1-11
    [29] Cissé C, Zaeem MA. On the elastocaloric effect in CuAlBe shape memory alloys: A quantitative phase-field modeling approach. Computational Materials Science, 2020,183:109808
    [30] Sun QP, Aslan A, Li M, et al. Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Science China Technological Sciences, 2014,57:671-679
    [31] Malik A, Amberg G, Borgenstam A, et al. Phase-field modelling of martensitic transformation: The effects of grain and twin boundaries. Modelling and Simulation in Materials Science and Engineering, 2013,21:085003
    [32] Mamivand M, Zaeem MA, Kadiri HEl. Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: A phase field study. International Journal of Plasticity, 2014,60:71-86
    [33] Ahluwalia R, Quek SS, Wu DT. Simulation of grain size effects in nanocrystalline shape memory alloys. Journal of Applied Physics, 2015,117:244305
    [34] Mikula J, Quek SS, Joshi SP, et al. The role of bimodal grain size distribution in nanocrystalline shape memory alloys. Smart Materials and Structures, 2018,27:105004
    [35] Xu B, Kang G, Kan Q, et al. Phase field simulation on the cyclic degeneration of one-way shape memory effect of NiTi shape memory alloy single crystal. International Journal of Mechanical Sciences, 2020,168:105303
    [36] Sun Y, Luo J, Zhu J. Phase field study of the microstructure evolution and thermomechanical properties of polycrystalline shape memory alloys: Grain size effect and rate effect. Computational Materials Science, 2018,145:252-262
    [37] Zhu J, Luo J, Sun Y. Phase field study of the grain size and temperature dependent mechanical responses of tetragonal zirconia polycrystals: A discussion of tension-compression asymmetry. Computational Materials Science, 2020,172:109326
    [38] Xu X, Xu B, Jiang HM, et al. A multi-mechanism model describing reorientation and reorientation-induced plasticity of NiTi shape memory alloy. Acta Mechanica Solida Sinica, 2018,31:445-458
  • 期刊类型引用(5)

    1. 杨云俊,畅舒心,张娟. 中锰TRIP钢棘轮行为的晶粒尺寸依赖性相场研究. 四川轻化工大学学报(自然科学版). 2025(01): 1-10 . 百度学术
    2. 王丽红,满蛟,周建平. Cu-Al-Ni形状记忆合金马氏体逆相变的相场模拟研究. 特种铸造及有色合金. 2024(02): 245-250 . 百度学术
    3. 徐波,于超,王宠,阚前华,王清远,康国政. 基于相场模拟的应力辅助时效的NiTi形状记忆合金功能性能研究. 力学学报. 2024(12): 3507-3520 . 本站查看
    4. 史博文,刘记立,刘津,严旺贤,朱岩,黄维. 扭转预变形提高Cu_(71.6)Al_(17)Mn_(11.4)形状记忆合金强度和阻尼性能的研究. 实验力学. 2022(02): 288-296 . 百度学术
    5. 王叔悦,陈天翔,滕富莉,刘磊,任欣悦. 基于形状记忆合金的新型12 kV跌落式熔断器设计. 高压电器. 2021(10): 176-181 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  1464
  • HTML全文浏览量:  182
  • PDF下载量:  492
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-11-22
  • 刊出日期:  2021-03-09

目录

    /

    返回文章
    返回