EI、Scopus 收录
中文核心期刊

含集中质量悬臂输流管的稳定性与模态演化特性研究

易浩然, 周坤, 代胡亮, 王琳, 倪樵

易浩然, 周坤, 代胡亮, 王琳, 倪樵. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020, 52(6): 1800-1810. DOI: 10.6052/0459-1879-20-280
引用本文: 易浩然, 周坤, 代胡亮, 王琳, 倪樵. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020, 52(6): 1800-1810. DOI: 10.6052/0459-1879-20-280
Yi Haoran, Zhou Kun, Dai Huliang, Wang Lin, Ni Qiao. STABILITY AND MODE EVOLUTION CHARACTERISTICS OF A CANTILEVERED FLUID-CONVEYING PIPE ATTACHED WITH THE LUMPED MASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810. DOI: 10.6052/0459-1879-20-280
Citation: Yi Haoran, Zhou Kun, Dai Huliang, Wang Lin, Ni Qiao. STABILITY AND MODE EVOLUTION CHARACTERISTICS OF A CANTILEVERED FLUID-CONVEYING PIPE ATTACHED WITH THE LUMPED MASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810. DOI: 10.6052/0459-1879-20-280
易浩然, 周坤, 代胡亮, 王琳, 倪樵. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020, 52(6): 1800-1810. CSTR: 32045.14.0459-1879-20-280
引用本文: 易浩然, 周坤, 代胡亮, 王琳, 倪樵. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020, 52(6): 1800-1810. CSTR: 32045.14.0459-1879-20-280
Yi Haoran, Zhou Kun, Dai Huliang, Wang Lin, Ni Qiao. STABILITY AND MODE EVOLUTION CHARACTERISTICS OF A CANTILEVERED FLUID-CONVEYING PIPE ATTACHED WITH THE LUMPED MASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810. CSTR: 32045.14.0459-1879-20-280
Citation: Yi Haoran, Zhou Kun, Dai Huliang, Wang Lin, Ni Qiao. STABILITY AND MODE EVOLUTION CHARACTERISTICS OF A CANTILEVERED FLUID-CONVEYING PIPE ATTACHED WITH THE LUMPED MASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810. CSTR: 32045.14.0459-1879-20-280

含集中质量悬臂输流管的稳定性与模态演化特性研究

基金项目: 1) 国家自然科学基金资助项目(11972167);国家自然科学基金资助项目(11622216)
详细信息
    作者简介:

    2) 代胡亮, 副教授, 主要研究方向: 非线性动力学, 流固耦合振动控制. E-mail: daihulianglx@hust.edu.cn

    通讯作者:

    代胡亮

  • 中图分类号: O322

STABILITY AND MODE EVOLUTION CHARACTERISTICS OF A CANTILEVERED FLUID-CONVEYING PIPE ATTACHED WITH THE LUMPED MASS

  • 摘要: 本文主要研究通过调控集中质量对悬臂输流管稳定性和振动模态特性的影响规律,为输流管动力学性能的可控性提供理论指导和实验依据. 首先基于扩展的哈密顿原理,建立了含集中质量悬臂输流管的非线性动力学理论模型. 基于线性动力学特性分析,研究发现集中质量沿管道轴向位置变化对输流管发生颤振失稳的临界流速有重要影响.并通过伽辽金前四阶模态截断处理线性矩阵方程式,定性地分析了集中质量位置与质量比的变化对于输流管稳定性影响的变化.实验结果表明, 输流管的颤振失稳模态随集中质量位置的变化发生了转迁. 此外,基于动力学理论分析, 发现集中质量比值对失稳临界流速也有重要的影响,且主要取决于集中质量的安装位置. 基于非线性特性,进一步分析了集中质量对输流管振动幅值的影响. 实验和理论研究发现,集中质量位置从固定端向自由端变化时, 输流管振幅表现出先增大后减小趋势,且振动模态也从二阶转迁到三阶.本研究有望为输流管振动驱动应用提供理论支撑与指导意义.
    Abstract: This work mainly investigates evolutions for the dynamic characteristics of a cantilevered pipe conveying fluid by regulating a lumped mass along the pipe's length, for the purpose of controlling the stability and vibration behaviors of the pipe. Firstly, on the base of the extended Hamilton principle, a nonlinear dynamic model for the cantilevered fluid-conveying pipe attached with the lumped mass is established. In the following, a linear analysis is performed to explore the evolution of critical flow velocity varying with the placed position of lumped mass, which is substantiated by experimental measurements showing that transition of the flutter mode occurs. In addition, it is significant that the attached lumped mass ratio has a great impact on the critical flow velocity based on the linear dynamic analysis, which is dependent on the placed positions and mass ratio. Subsequently, a nonlinear analysis is conducted to investigate the effect of lumped mass on vibration amplitude of the pipe. It is indicated that the vibration amplitude is first increased and then decreased with the lumped mass varying from the fixed end to the free end, which is well compared to those of experimental measurements. The vibration mode of the pipe conveying fluid is transferred from the second mode to the third mode with varying the placed position of lumped mass, which is also observed in the experiments. The present study is expected to be beneficial for designing an underwater driven system based on flutter of pipes conveying fluid. In this way, the pipe's vibration mode can be adjusted through adding and adapting the lumped mass.
  • [1] Paidoussis MP. Fluid-Structure Interactions: Slender Structures and Axial Flow (Vol.1) London: Academic Press, 1998
    [2] Paidoussis MP, Li GX. Pipes conveying fluid: A model dynamical problem. Journal of Fluids and Structures, 1993,7:137-204
    [3] Semler C, Li GX, Paidoussis MP. The non-linear equations of motion of pipes conveying fluid. Journal of Sound and Vibration, 1994,169(5):577-599
    [4] Wadham-Gagnon M, Paidoussis MP, Semler C. Dynamics of cantilevered pipes conveying fluid. Part 1: Nonlinear equations of three-dimensional motion. Journal of Fluids and Structures, 2007,23(4):545-567
    [5] Yoon H, Son IS. Dynamic response of rotating flexible cantilever pipe conveying fluid with tip mass. International Journal of Mechanical Sciences, 2007,49:878-887
    [6] Dai HL, Wang L, Ni Q. Dynamics of a fluid-conveying pipe composed of two different materials. International Journal of Engineering Science, 2013,73:67-76
    [7] Zhou K, Xiong FR, Jiang NB, et al. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 2019,95:1435-1456
    [8] Liu ZY, Wang L, Dai HL, et al. Nonplanar vortex-induced vibrations of cantilevered pipes conveying fluid subjected to loose constraints. Ocean Engineering, 2019,178:1-19
    [9] Ni Q, Wang Y, Tang M, et al. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 2015,81(1-2):893-906
    [10] Yan H, Dai H, Ni Q, et al. Nonlinear dynamics of a sliding pipe conveying fluid. Journal of Fluids and Structures, 2018,81:36-57
    [11] 周坤, 倪樵, 代胡亮 等. 周期性输流管道的非线性动力学特性研究. 振动与冲击, 2020,39(10):75-80
    [11] ( Zhou Kun, Ni Qiao, Dai Huliang, et al. Analysis of nonlinear dynamic characteristics of periodic pipe conveying fluid. Journal of Vibration and Shock, 2020,39(10):75-80 (in Chinese))
    [12] Yu D, Pa?doussis MP, Shen H, et al. Dynamic stability of periodic pipes conveying fluid. Journal of Applied Mechanics, 2014,81(1):011008
    [13] Najjar J, Daneshmand F. Stability of horizontal and vertical pipes conveying fluid under the effects of additional point masses and springs. Ocean Engineering, 2020,206
    [14] Li Q, Liu W, Zhang Z, et al. Parametric resonance of pipes with soft and hard segments conveying pulsating fluids. International Journal of Structural Stability and Dynamics, 2018,18(10):1850119
    [15] Stangl M, Gerstmayr J, Irschik H. A large deformation planar finite element for pipes conveying fluid based on the absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics, 2009,4(3):031009
    [16] Modarres-Sadeghi Y, Paidoussis MP, Semler C. Three-dimensional oscillations of a cantilever pipe conveying fluid. International Journal of Non-Linear Mechanics, 2008,43(1):18-25
    [17] Giacobbi DB, Semler C, Pa?doussis MP. Dynamics of pipes conveying fluid of axially varying density. Journal of Sound and Vibration, 2020,473
    [18] 金基铎, 邹光胜, 张宇飞. 悬臂输流管道的运动分岔现象和混沌运动. 力学学报, 2002,34(6):863-873
    [18] ( Jin Jiduo, Zou Guangsheng, Zhang Yufei. Bifurcations and chaotic motions of a cantilevered pipe conveying fluid. Chinese Journal of Theoretical and Applied Mechanics, 2002,34(6):863-873 (in Chinese))
    [19] 王乙坤, 王琳. 分布式运动约束下悬臂输液管的参数共振研究. 力学学报, 2019,51(2):558-568
    [19] ( Wang Yikun, Wang Lin. Parametricresonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):558-568 (in Chinese))
    [20] 王乙坤, 倪樵, 王琳 等. 具有松动约束悬臂输液管的三维非线性振动. 科学通报, 2017,62(36):4270-4277
    [20] ( Wang Yikun, Ni Qiao, Wang Lin, et al. Three-dimensional nonlinear dynamics of a cantilevered pipe conveying fluid subjected to loose constraints. Chinese Science Bulletin, 2017,62(36):4270-4277 (in Chinese))
    [21] Stangl M, Gerstmayr J, Irschik H. An alternative approach for the analysis of nonlinear vibrations of pipes conveying fluid. Journal of Sound and Vibration, 2008,310(3):493-511
    [22] 徐鉴, 王琳. 输流管动力学分析和控制. 北京: 科学出版社, 2015
    [22] ( Xu Jian, Wang Lin. Dynamics and Control of Fluid-conveying Pipe Systems. Beijing: Science Press, 2015 (in Chinese))
    [23] 张艳雷, 黄慧春, 陈立群. 振荡流作用下受约束的悬臂输流管的分岔特性. 噪声与振动控制, 2012,32(5):46-48, 167
    [23] ( Zhang Yanlei, Huang Huichun, Chen Liqun. Bifurcation analysis of a constrained cantilevered pipe conveying fluid under the harmonic parametric excitations. Noise and Vibration Control, 2012,32(5):46-48, 167 (in Chinese))
    [24] 黄茜, 臧峰刚, 张毅雄 等. 带滞变支撑悬臂输流管的动力响应分析. 振动与冲击, 2011,30(11):8-12
    [24] ( Huang Qian, Zang Fenggang, Zhang Yixiong, et al. Nonlinear dynamic analysis of cantilevered pipes conveying fluid with hysteretic supports. Journal of Vibration and Shock, 2011,30(11):8-12 (in Chinese))
    [25] 何涛. 基于 ALE 有限元法的流固耦合强耦合数值模拟. 力学学报, 2018,50(2):395-404
    [25] ( He Tao. A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary lagrangian-eulerian finite element formulation. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):395-404 (in Chinese))
    [26] 胡璐, 闫寒, 张文明 等. 黏性流体环境下 V 型悬臂梁结构流固耦合振动特性研究. 力学学报, 2018,50(3):643-653
    [26] ( Hu Lu, Yan Han, Zhang Wenming, et al. Analysis of flexural vibration of V-shaped beams immersed in viscous fluids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):643-653 (in Chinese))
    [27] 邹光胜, 金基铎, 沙云东. 简谐激励下输流管动态响应特性的实验研究. 振动、测试与诊断, 2001(1):28-31
    [27] ( Zou Guangsheng, Jin Jiduo, Sha Yundong. Experimental study on vibration of pipes conveying fluid under harmonic excitation. Journal of Vibration, Measurement & Diagnosis, 2001(1):28-31 (in Chinese))
    [28] 高培鑫. 多源激励下航空液压管路系统振动分析及其约束层阻尼减振技术研究. [博士论文]. 大连: 大连理工大学, 2017
    [28] ( Gao Peixin. Vibration analysis of aviation hydraulic pipeline system under multi-source excitation and study on damping and vibration reduction technology of constrained layer. [PhD Thesis]. Dalian: Dalian University of Technology, 2017 (in Chinese))
    [29] 郭世豪, 李晔. 柔性输流管泄流效应实验研究. 应用数学和力学, 2019,40(8):866-879
    [29] ( Guo Shihao, Li Ye. Experimental study on discharge effect of flexible pipe conveying fluid. Journal Applied Mathematics and Mechanics, 2019,40(8):866-879 (in Chinese))
    [30] 代胡亮, 林时想, 张岚斌 等. 基于人体运动的压电-电磁混合式振动能量采集研究. 固体力学学报, 2019,40(5):427-440
    [30] ( Dai Huliang, Lin Shixiang, Zhang Lanbin, et al. Chinese Journal of Solid Mechanics, 2019,40(5):427-440 (in Chinese))
  • 期刊类型引用(19)

    1. 陈伟,曹润青,胡嘉纯,代胡亮,王琳. 细长输流管道大变形动力学研究进展. 力学进展. 2025(01): 113-174 . 百度学术
    2. 张博,王毅琛,蔡承宇,丁虎,陈立群. 含多通道不同流向旋转输流管动力学特性分析. 应用数学和力学. 2025(04): 438-450 . 百度学术
    3. 邢浩然,何毅翔,代胡亮,王琳. 基于绝对节点坐标法的复杂构型输流管道简支支承设计研究. 力学学报. 2024(02): 482-493 . 本站查看
    4. 高云,陈晓东,程玮,刘磊. 固-液两相内流激励下悬臂输流管道稳定性特征研究. 力学学报. 2024(03): 577-585 . 本站查看
    5. 何毅翔,杨正铖,邢浩然,代胡亮,王琳. 基于输流软管驱动的仿水母动力学设计、仿真与实验. 中国科学:物理学 力学 天文学. 2024(06): 116-128 . 百度学术
    6. 马永奇,沈义俊,杜燕连,李萌,尤云祥,冯爱春. 悬臂输流管道内流自激振动稳定性分析. 中国造船. 2024(03): 1-12 . 百度学术
    7. 张博,郑昊楷,孙东生,丁虎,陈立群. 双通道旋转输流管临界流速和振动模态分析. 力学学报. 2023(01): 182-191 . 本站查看
    8. 赵桂欣,孟帅,车驰东,陈俐. 解释自由端含集中质量悬臂输流管固有频率计算悖论. 振动与冲击. 2023(07): 18-24 . 百度学术
    9. 马永奇,沈义俊,尤云祥,冯爱春,陈科. 附加重块和弹簧刚度对垂直悬臂输流管动力学稳定性的影响研究. 中国造船. 2023(03): 212-222 . 百度学术
    10. 何毅翔,邢浩然,代胡亮,王琳. 外流作用下管道流固耦合非线性动力学研究进展. 动力学与控制学报. 2023(06): 3-17 . 百度学术
    11. 罗航,周顶昌,马永奇,冯爱春. 内流激发垂直悬臂管振动失稳特性实验研究. 装备环境工程. 2023(08): 30-36 . 百度学术
    12. 王艳红,郭长青,陈翔瑜. 端部随从力作用下黏弹性悬臂输流管道的稳定性分析. 南华大学学报(自然科学版). 2023(06): 1-7 . 百度学术
    13. 张博,史天姿,张贻林,孙东生,袁从敏,丁虎,陈立群. 旋转输液管动力稳定性理论分析. 应用数学和力学. 2022(02): 166-175 . 百度学术
    14. 颜雄 ,魏莎 ,毛晓晔 ,丁虎 ,陈立群 . 两端弹性支承输流管道固有特性研究. 力学学报. 2022(05): 1341-1352 . 本站查看
    15. 张宇飞,王昊. 基础激励作用下悬臂输流管的振动实验研究. 动力学与控制学报. 2022(03): 50-55 . 百度学术
    16. 吴明明,杨翊仁,李鹏. 段塞流输流管道的稳定性分析. 四川轻化工大学学报(自然科学版). 2022(03): 26-33 . 百度学术
    17. 陆子 ,何毅翔 ,张岚斌 ,代胡亮 ,王琳 . 基于非线性吸能机理的涡激振动减振理论与实验研究. 力学学报. 2022(11): 3147-3156 . 本站查看
    18. 刘颖,郭长青. 粘弹性悬臂输流管道在激励力下的稳态响应分析. 南华大学学报(自然科学版). 2021(01): 43-48 . 百度学术
    19. 郭梓龙,王琳,倪樵,贾青青,杨文正. 接地惯容式减振器对悬臂输流管稳定性和动态响应的影响研究. 力学学报. 2021(06): 1769-1780 . 本站查看

    其他类型引用(15)

计量
  • 文章访问数:  1046
  • HTML全文浏览量:  179
  • PDF下载量:  125
  • 被引次数: 34
出版历程
  • 收稿日期:  2020-08-10
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回