EI、Scopus 收录
中文核心期刊

一种新型介电弹性体仿生可调焦透镜的变焦分析

史惠琦, 王惠明

史惠琦, 王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析[J]. 力学学报, 2020, 52(6): 1719-1729. DOI: 10.6052/0459-1879-20-212
引用本文: 史惠琦, 王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析[J]. 力学学报, 2020, 52(6): 1719-1729. DOI: 10.6052/0459-1879-20-212
Shi Huiqi, Wang Huiming. THEORETICAL NONLINEAR ANALYSIS OF A BIOMIMETIC TUNABLE LENS DRIVEN BY DIELECTRIC ELASTOMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729. DOI: 10.6052/0459-1879-20-212
Citation: Shi Huiqi, Wang Huiming. THEORETICAL NONLINEAR ANALYSIS OF A BIOMIMETIC TUNABLE LENS DRIVEN BY DIELECTRIC ELASTOMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729. DOI: 10.6052/0459-1879-20-212
史惠琦, 王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析[J]. 力学学报, 2020, 52(6): 1719-1729. CSTR: 32045.14.0459-1879-20-212
引用本文: 史惠琦, 王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析[J]. 力学学报, 2020, 52(6): 1719-1729. CSTR: 32045.14.0459-1879-20-212
Shi Huiqi, Wang Huiming. THEORETICAL NONLINEAR ANALYSIS OF A BIOMIMETIC TUNABLE LENS DRIVEN BY DIELECTRIC ELASTOMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729. CSTR: 32045.14.0459-1879-20-212
Citation: Shi Huiqi, Wang Huiming. THEORETICAL NONLINEAR ANALYSIS OF A BIOMIMETIC TUNABLE LENS DRIVEN BY DIELECTRIC ELASTOMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1719-1729. CSTR: 32045.14.0459-1879-20-212

一种新型介电弹性体仿生可调焦透镜的变焦分析

基金项目: 1) 国家自然科学基金资助项目(11772296)
详细信息
    作者简介:

    2) 王惠明,教授,主要研究方向:多场耦合力学, 智能软材料非线性力学. E-mail: wanghuiming@zju.edu.cn

    通讯作者:

    王惠明

  • 中图分类号: O343.5

THEORETICAL NONLINEAR ANALYSIS OF A BIOMIMETIC TUNABLE LENS DRIVEN BY DIELECTRIC ELASTOMER

  • 摘要: 介电弹性体 (dielectric elastomer) 是电活性聚合物智能材料的一种,在外加电场作用下,可产生多种形式的响应.在驱动柔性透镜的变焦方面,相对于传统的机械操控变焦方法 显示出独特的优势.针对一款在电压激励下可高效调节焦距的介电弹性体仿人眼变焦透镜,该透镜由上下两层介电弹性薄膜和固定框架构成,并在封闭腔内充入盐水,上层薄膜涂覆环形柔性电极.在电压激励下,上层膜发生变形,由于盐水的体积保持恒定,引 起下层膜随之变形,使得透镜的焦距发生改变.采用 neo-Hookean 模型,利用变分原理导出了该透镜的控制方程、边界条件和连 续条件.利用打靶法求解了该非线性问题并高效地处理了非线性问题的界面连续条件. 理论分析结果与实验结果相吻合. 利用此模型开展了广泛的参数分析,研究表明,透镜的几何形状、初始焦距、介电弹性体薄膜的预拉伸率、涂覆的电极面积、材料的剪切模量等对透镜焦距的调节性能都有重要的影响.所建立的理论分析模型可为柔性仿生透镜的设计和参数优化提供有效的分析方法.
    Abstract: Dielectric elastomer (DE) is a class of electroactive polymer smart materials. Under the external electric field, it can produce various forms of responses. Comparing with the traditional lens with which the focus length is manipulated by the mechanical controls, the DE soft tunable lenses exhibit the distinct advantages in the tuning way of the focal length. The DE soft tunable lenses tune the focal length by mimicking the eyeball of human beings. The lens is composed of two circular DE films which are fixed on the rigid frame. The salty water is filled in the enclosed space and forms a convex lens. The top DE film is coated by the annular compliant electrodes. Under the voltage excitation, the upper film is deformed. Accordingly, the lower film is deformed due to the incompressibility of the salt water sealed in the enclosed space. Subsequently, the focal length of the tunable lens is changed. By employing the variational principle and the neo-Hookean model, we obtain the governing equations, boundary conditions and the continuity conditions of the biomimetic lens when driven by the dielectric elastomers. The nonlinear governing equations are solved by the shooting method and the continuity conditions at the interface are treated with in an effective way. The theoretical results agree well with the experimental data. The extensive parametric analysis is carried out based on the presented model. The numerical results show that the geometrical configuration, the initial focal length, the area of the coated annular compliant electrodes, the pre-stretch of the top DE film and the shear modulus of the bottom film have significant effect on the adjusting performance of the tunable lens. The presented theoretical model provides an effective tool in designing and optimizing the biomimetic adaptive focus lens.
  • [1] Friese C, Werber A, Krogmann A, et al. Materials, effects and components for tunable micro-optics. IEEJ Transactions on Electrical and Electronic Engineering, 2007,2(3):232-248
    [2] Dong L, Agarwal AK, Beebe DJ, et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 2006,442(7102):551-554
    [3] Li GQ, Mathine DL, Valley P, et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(16):6100-6104
    [4] Wang WS, Fang J. Design, fabrication and testing of a micromachined integrated tunable microlens. Journal of Micromechanics and Microengineering, 2006,16(7):1221-1226
    [5] Choi D, Jeong J, Shin E, et al. Focus-tunable double convex lens based on non-Ionic electroactive gel. Optics Express, 2017,25(17):20133-20141
    [6] 贾书海, 唐振华, 董君 等. 柔性变焦透镜发展现状. 中国光学, 2015,8(4):535-547
    [6] ( Jia Shuhai, Tang Zhenhua, Dong Jun, et al. Recent advances in flexible variable-focus lens. Chinese Optics and Applied Optics Abstracts, 2015,8(4):535-547 (in Chinese))
    [7] 邹异, 李华, 曹洋 等. 频率调控液体变焦透镜. 苏州科技大学学报:自然科学版, 2017,34(3):45-49
    [7] ( Zou Yi, Li Hua, Cao Yang, et al. Variable-focus liquid lens using frequency control. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2017,34(3):45-49 (in Chinese))
    [8] Gowda HGB, Wallrabe U. Simulation of an adaptive fluid-membrane piezoelectric lens. Micromachines, 2019,10(12):797
    [9] Huang X, Jin H, Lin SY, et al. Adaptive electrofluid-actuated liquid lens. Optics Letters, 2020,45(2):331-334
    [10] Song XM, Zhang HX, Li DY, et al. Liquid lens with large focal length tunability fabricated in a polyvinyl chloride/dibutyl phthalate gel tube. Langmuir, 2020,36(6):1430-1436
    [11] Ghilardi M, Boys H, Torok P, et al. Smart lenses with electrically tuneable astigmatism. Scientific Reports, 2019,9(1):16127
    [12] Huang HY, Zhao Y. Optofluidic lenses for 2D and 3D imaging. Journal of Micromechanics and Microengineering, 2019,29(7):073001
    [13] Mockensturm EM, Goulbourne N. Dynamic response of dielectric elastomers. International Journal of Non-Linear Mechanics, 2006,41(3):388-395
    [14] Plante JS, Dubowsky S. Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 2006,43(25):7727-7751
    [15] Patrick L, Gabor K, Silvain M. Characterization of dielectric elastomer actuators based on a visco-hyperelastic film model. Smart Materials and Structures, 2007,16(2):477-486
    [16] Koh KH, Sreekumar M, Ponnambalam SG. Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot. Mechatronics, 2016,35:122-135
    [17] Shian S, Bertoldi K, Clarke DR. Dielectric elastomer based "grippers" for soft robotics. Advanced Materials, 2015,27(43):6814-6819
    [18] Gupta U, Qin L, Wang YZ, et al. Soft robots based on dielectric elastomer actuators: A review. Smart Materials and Structures, 2019,28(10):103002
    [19] Bortot E, Springhetti R, de Botton G, et al. Optimization of load-driven soft dielectric elastomer generators. Procedia IUTAM, 2015,12:42-51
    [20] McKay TG, Rosset S, Anderson IA, et al. Dielectric elastomer generators that stack up. Smart Materials and Structures, 2015,24(1):015014
    [21] Carpi F, Frediani G, Turco S, et al. Bioinspired tunable lens with muscle-like electroactive elastomers. Advanced Functional Materials, 2011,21(21):4152-4158
    [22] Zhang H, Dai M, Zhang ZS. The analysis of transparent dielectric elastomer actuators for lens. Optik, 2019,178:841-845
    [23] She A, Zhang SY, Shian S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, shift. Science Advances, 2018, 4(2): eaap9957
    [24] Suo ZG. Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 2010,23(6):549-578
    [25] 刘彦菊, 刘立武, 孙寿华 等. 介电弹性体驱动器的稳定性分析. 中国科学 E 辑: 技术科学, 2009,39:1564-1573
    [25] ( Liu Yanju, Liu Liwu, Sun Shouhua, et al. Stability analysis of dielectric elastomer film actuator. Science in China (Series E), 2009,39:1564-1573 (in Chinese))
    [26] Lu TQ, Ma C, Wang TJ. Mechanics of dielectric elastomer structures: A review. Extreme Mechanics Letters, 2020,38:100752
    [27] 魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型. 力学学报, 2019,51(2):473-483
    [27] ( Wei Zhigang, Chen Haibo. A new elastic model for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):473-483 (in Chinese))
    [28] Li JR, Wang Y, Liu LW, et al. A biomimetic soft lens controlled by electrooculographic signal. Advanced Functional Materials, 2019,29(36):1903762
    [29] Pelrine RE, Kornbluh RD, Pei QB, et al. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000,287(5454):836-839
    [30] Lu TQ, Cai SQ, Wang HM, et al. Computational model of deformable lenses actuated by dielectric elastomers. Journal of Applied Physics, 2013,114(10):104104
    [31] Wang HM, Cai SQ, Carpi F, et al. Computational model of hydrostatically coupled dielectric elastomer actuators. Journal of Applied Mechanics, 2012,79(3):031008
    [32] Li JR, Lv XF, Liu LW, et al. Computational model and design of the soft tunable lens actuated by dielectric elastomer. Journal of Applied Mechanics, 2020,87(7):071005
    [33] 杨健鹏, 王惠明. 功能梯度球形水凝胶的化学力学耦合分析. 力学学报, 2019,51(4):1054-1063
    [33] ( Yang Jianpeng, Wang Huiming. Chemomechanical analysis of a functionally graded spherical hydrogel. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1054-1063 (in Chinese))
    [34] 郑保敬, 梁钰, 高效伟 等. 功能梯度材料动力学问题的 POD 模型降阶分析. 力学学报, 2018,50(4):787-797
    [34] ( Zheng Baojing, Liang Yu, Gao Xiaowei, et al. Analysis for dynamic response of functionally graded materials using pod based reduced order model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):787-797 (in Chinese))
    [35] Zhao XH, Hong W, Suo ZG. Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 2007,76(13):134113
    [36] Shian S, Diebold RM, Clarke DR. Tunable lenses using transparent dielectric elastomer actuators. Optics Express, 2013,21(7):8669-8676
    [37] Li TF, Keplinger C, Baumgartner R, et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 2013,61(2):611-628
  • 期刊类型引用(3)

    1. 刘海渤,胡源,李雨哲,赵金辉. 液体透镜研究现状与发展综述. 激光与光电子学进展. 2024(09): 66-76 . 百度学术
    2. 徐军,李鹏,尚闫,钱征华,马廷锋. 凹透镜实现亚波长聚焦的理论和实验研究. 力学学报. 2023(08): 1742-1752 . 本站查看
    3. 刘岩,王惠明. 考虑微观变形特征的水凝胶均匀和非均匀溶胀分析及其影响参数研究. 力学学报. 2021(02): 437-447 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  1051
  • HTML全文浏览量:  162
  • PDF下载量:  120
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-06-17
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回