EI、Scopus 收录
中文核心期刊

高速列车气动外形优化研究进展

孙振旭, 姚永芳, 郭迪龙, 杨国伟, 姚拴宝, 张业, 陈大伟, 李桂波, 尚克明, 贾玲

孙振旭, 姚永芳, 郭迪龙, 杨国伟, 姚拴宝, 张业, 陈大伟, 李桂波, 尚克明, 贾玲. 高速列车气动外形优化研究进展[J]. 力学学报, 2021, 53(1): 51-74. DOI: 10.6052/0459-1879-20-205
引用本文: 孙振旭, 姚永芳, 郭迪龙, 杨国伟, 姚拴宝, 张业, 陈大伟, 李桂波, 尚克明, 贾玲. 高速列车气动外形优化研究进展[J]. 力学学报, 2021, 53(1): 51-74. DOI: 10.6052/0459-1879-20-205
Sun Zhenxu, Yao Yongfang, Guo Dilong, Yang Guowei, Yao Shuanbao, Zhang Ye, Chen Dawei, Li Guibo, Shang Keming, Jia Ling. RESEARCH PROGRESS IN AERODYNAMIC OPTIMIZATION OF HIGH-SPEED TRAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 51-74. DOI: 10.6052/0459-1879-20-205
Citation: Sun Zhenxu, Yao Yongfang, Guo Dilong, Yang Guowei, Yao Shuanbao, Zhang Ye, Chen Dawei, Li Guibo, Shang Keming, Jia Ling. RESEARCH PROGRESS IN AERODYNAMIC OPTIMIZATION OF HIGH-SPEED TRAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 51-74. DOI: 10.6052/0459-1879-20-205
孙振旭, 姚永芳, 郭迪龙, 杨国伟, 姚拴宝, 张业, 陈大伟, 李桂波, 尚克明, 贾玲. 高速列车气动外形优化研究进展[J]. 力学学报, 2021, 53(1): 51-74. CSTR: 32045.14.0459-1879-20-205
引用本文: 孙振旭, 姚永芳, 郭迪龙, 杨国伟, 姚拴宝, 张业, 陈大伟, 李桂波, 尚克明, 贾玲. 高速列车气动外形优化研究进展[J]. 力学学报, 2021, 53(1): 51-74. CSTR: 32045.14.0459-1879-20-205
Sun Zhenxu, Yao Yongfang, Guo Dilong, Yang Guowei, Yao Shuanbao, Zhang Ye, Chen Dawei, Li Guibo, Shang Keming, Jia Ling. RESEARCH PROGRESS IN AERODYNAMIC OPTIMIZATION OF HIGH-SPEED TRAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 51-74. CSTR: 32045.14.0459-1879-20-205
Citation: Sun Zhenxu, Yao Yongfang, Guo Dilong, Yang Guowei, Yao Shuanbao, Zhang Ye, Chen Dawei, Li Guibo, Shang Keming, Jia Ling. RESEARCH PROGRESS IN AERODYNAMIC OPTIMIZATION OF HIGH-SPEED TRAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 51-74. CSTR: 32045.14.0459-1879-20-205

高速列车气动外形优化研究进展

基金项目: 1)国家重点研发计划先进轨道交通重点专项项目(2016YFB1200601-B13);中国科学院青年创新促进会项目资助(2019020)
详细信息
    作者简介:

    2)孙振旭, 副研究员, 主要研究方向: 高速列车气动特性与气动优化. E-mail: sunzhenxu@imech.ac.cn

    通讯作者:

    孙振旭

    孙振旭,杨国伟

  • 中图分类号: U266

RESEARCH PROGRESS IN AERODYNAMIC OPTIMIZATION OF HIGH-SPEED TRAINS

  • 摘要: 随着运行速度的提升, 高速列车对气动外形的要求也越来越高, 追求性能优异、美观大方的气动外形是新型高速列车研发的一个重要方向. 基于当前高速列车外形研发的思路, 可以将气动外形优化概括为基于流场机理的改型优化和基于优化算法的外形优化两类. 本文简要回顾了当前国内外在这两类优化途径上的系列工作, 着重介绍了作者所在团队近年来做过的一系列气动外形优化工作. 在基于流场机理的改型优化上, 着重从"和谐号"和"复兴号"这两款主力车型的外形研发上探讨其改型优化的思路, 主要探讨了空调导流罩、受电弓平台、风挡和转向架裙板几类对列车阻力影响较为明显的部件的优化设计,并介绍了其相对于上一代车型在气动性能上的提升. 基于优化算法的外形优化方法,则因循气动外形优化流程, 在列车外形已经具有较好性能的基础上,以高速列车头型流线型为主要优化对象,分别从高速列车参数化方法、替代模型开发以及优化算法改进三个方面进行介绍.其中,高速列车参数化方法主要介绍了局部型函数法、修正车辆造型函数法和类别/形状函数法三类;替代模型开发介绍了最优化替代模型和基于交叉验证的Kriging模型; 在优化算法的改进上介绍了改进的非劣分类多目标粒子群算法和连续域混沌蚁群算法两方面的内容.基于上述三个方面介绍了气动外形优化策略在典型工程上的应用案例.
    Abstract: With the increase of running speed, high-speed trains have higher requirement for aerodynamic shape. The pursuit of excellent performance and beautiful aerodynamic shape tends to be an important direction in the development of new high-speed trains. Based on the current aerodynamic study of high-speed trains, aerodynamic shape optimization can be divided into two categories: shape modification optimization based on flow mechanism and shape optimization based on optimization algorithms. After a brief review of the current domestic and foreign work on these two optimization approaches, this paper focuses on a series of aerodynamic shape optimization work done by the author's team in recent years. In terms of the modification optimization based on the flow field mechanism, this paper focuses on the research and development of the appearance of the two main models, namely "CRH" and "Fuxing" , to discuss the idea of the modification optimization. It mainly discusses the optimization design of air conditioning cover, pantograph installation platform, windshield and bogie apron, which have obvious influence on the train resistance, and introduces the improvement of aerodynamic performance of these components compared with the previous models. In the shape optimization method based on an optimization algorithm, according to the aerodynamic shape optimization process, taking the streamline of high-speed train head as the main optimization object, we introduce our series of work from three aspects: high-speed train parameterization method, surrogate model development and the improvement of the optimization algorithm. Among them, high-speed train parameterization methods mainly include local function method, modified vehicle modeling function method, and category/shape function method; in the development of the alternative model, the optimization alternative model and Kriging model based on cross-validation are introduced; on the improvement of the optimization algorithm, the improved non-inferior classification multi-objective particle swarm optimization algorithm and continuous domain chaotic ant colony algorithm are introduced. Based on the improvement of the above three aspects, the application cases of the developed aerodynamic shape optimization strategy in typical engineering are further introduced.
  • [1] Baker C . The flow around high speed trains. Journal of Wind Engineering and Industrial Aerodynamics, 2010,98(6-7):277-298
    [2] Tian HQ . Formation mechanism of aerodynamic drag of high-speed train and some reduction measures. Journal of Central South University, 2009(1):166-171
    [3] 田红旗 . 列车空气动力学. 北京: 中国铁道出版社, 2007: 156-164.

    (Tian Hongqi. Train Aerodynamics. Beijing: China Railway Press, 2007: 156-164(in Chinese))

    [4] Muld TW, Efraimsson G, Henningson DS . Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition. Computers & Fluids, 2012,57(4):87-97
    [5] Schwanitz S, Wittkowski M, Rolny V , et al. Pressure variations on a train: Where is the threshold to railway passenger discomfort. Applied Ergonomics, 2013,44(2):200-209
    [6] 张亮, 张继业, 李田  等. 高速列车头型多目标气动优化设计. 西南交通大学学报, 2016,51(6):1055-1063.

    (Zhang Liang, Zhang Jiye, Li Tian , et al. Multi-objective aerodynamic optimization design for head shape of high-speed trains. Journal of Southwest Jiaotong University, 2016,51(6):1055-1063 (in Chinese))

    [7] Miyako A, Yamamoto Y . Investigation of running resistance of high speed trains//Proceedings of the World Congress on Railway Research, 1997: 577-579
    [8] Schulte-Werning B . Research of european railway operators to reduce the environmental impact of high-speed trains. Journal of Rail and Rapid Transit, 2003,217(4):249-257
    [9] I Do A,  Saitou S,  Nkakade K, et al. Study on under-floor flow to reduce ballast flying phenomena//World Congress on Railway Research. Seoul [s.n], 2008
    [10] 陈南翼, 张健 . 高速列车空气阻力实验研究. 铁道学报, 1998,20(5):40-46.

    (Chen Nanyi, Zhang Jian . Experimental investigation on aerodynamic drag of high speed train. Journal of the China Railway Society, 1998,20(5):40-46 (in Chinese))

    [11] 缪新乐, 李明, 姚勇  等. 高速列车头车外形结构优化风洞试验研究. 铁道科学与工程学报, 2012,9(2):94-98.

    (Miao Xinle, Li Ming, Yao Yong , et al. Wind tunnel test investigation on the shape optimization of head car of the high speed train. Journal of Railway Science and Engineering, 2012,9(2):94-98 (in Chinese))

    [12] 杨加寿, 蒋崇文, 高振勋  等, 车厢间风挡形式对高速列车气动性能的影响. 铁道学报, 2012,34(11):29-35.

    (Yang Jiashou, Jiang Chongwen, Gao Zhenxun , et al. Influence of inter-car wind-shield schemes on aerodynamic performance of high-speed trains. Journal of the China Railway Society, 2012,34(11):29-35 (in Chinese))

    [13] 杨恩宇 . 风挡形式对高速列车气动性能的影响研究. [硕士论文]. 兰州: 兰州交通大学, 2001.

    (Yang Enyu . Research on the influence of windshield schemes on aerodynamic performance of high-speed trains. [Master Thesis]. Lanzhou: Lanzhou Jiaotong University, 2001 (in Chinese))

    [14] Kaltenbach HJ, Portillo IA, Schober M . A Generic Train-under Foor Experiment for CFD Validation [J/OL]. [2008-07-22] https://www.Researchgate.Net/publication/228454900A Generic Train Underfloor Experiment for CFD Validation
    [15] 郑循皓, 张继业, 张卫华 . 高速列车转向架空气阻力的数值模拟. 交通运输工程学报, 2011,11(2):45-51.

    (Zheng Xunhao, Zhang Jiye, Zhang Weihua . Numerical simulation of aerodynamic drag for high-speed train bogie. Journal of Traffic and Transportation Engineering, 2011,11(2):45-51 (in Chinese))

    [16] 杨志刚, 高喆, 陈羽  等. 裙板安装对高速列车气动性能影响的数值研究. 计算机辅助工程, 2010,19(3):16-21.

    (Yang Zhigang, Gao Zhe, Chen Yu , et al. Numerical analysis on influence on aerodynamic performance of high-speed train caused by installation of skirt plates. Computer Aided Engineering, 2010,19(3):16-21 (in Chinese))

    [17] Wang JB, Minelli G, Dong T . The effect of bogie fairings on the slipstream and wake flow of a high-speed train- An IDDES study. Journal of Wind Engineering & Industrial Aerodynamics, 2019 ( 191):183-202
    [18] Wang DP, He ZK, Li MG , et al. Numerical research on aerodynamic drag reduction optimization of emu. Journal of the China Railway Society, 2011,33(10):15-18
    [19] Krajnovi S . Shape optimization of high-speed trains for improved aerodynamic performance. Journal of Rail and Rapid Transit, 2009,223(5):439-452
    [20] 熊骏 . 城际列车气动外形优化研究.[硕士论文]. 成都: 西南交通大学, 2012.

    (Xiong Jun . Research on aerodynamic shape optimization of intercity trains. [Master Thesis]. Chengdu: Southwest Jiaotong University, 2012 (in Chinese))

    [21] 刘加利, 李明高, 张继业  等. 高速列车流线型头部多目标气动优化设计. 中国科学: 技术科学, 2013,43(6):689-698.

    (Liu Jiali, Li Minggao, Zhang Jiye , et al. Multi-objective aerodynamic optimization design of streamline head of high-speed train. Chinese Science:Technology Science, 2013,43(6):689-698 (in Chinese))

    [22] 李明, 李明高, 李国清  等. 参数化驱动的高速列车头型气动外形优化设计. 铁道学报, 2013,35:14-20.

    (Li Ming, Li Minggao, Li Guoqing , et al. Aerodynamic shape optimization design of high speed train head with parametric driving. Journal of China Railway Society, 2013,35:14-20 (in Chinese))

    [23] Mu$ ilde{n}$oz-Paniagua J, Garcia J, Crespo A . Genetically aerodynamic optimization of the nose shape of a high-speed train entering a tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 2014,130(7):48-61
    [24] Sun ZX, Song JJ, An YR . Optimization of the head shape of the CRH3 high speed train. Science China Technological Science, 2010,53(12):3356-3364
    [25] Yu MG, Zhang JY, Zhang WH . Multi-objective optimization design method of the high-speed train head. Journal of Zhejiang University: Science A, 2013,14(9):631-641
    [26] 于梦阁, 张继业, 张卫华 . 横风下高速列车流线型头型多目标气动优化设计. 机械工程学报, 2014,50:122-129.

    (Yu Mengge, Zhang Jiye, Zhang Weihua . Multi-objective aerodynamic optimization design of streamline head of high-speed train in crosswind. Journal of Mechanical Engineering, 2014,50:122-129 (in Chinese))

    [27] 翟建平 . 气动载荷下高速列车动力性能及参数优化研究. [硕士论文]. 成都: 西南交通大学, 2012.

    (Zhai Jianping . The dynamic Characteristic and dynamic parameter optimization of high-speed train under aerodynamic loads. [Master Thesis]. Chengdu: Southwest Jiaotong University, 2012 (in Chinese))

    [28] 姚拴宝, 郭迪龙, 杨国伟  等. 高速列车气动阻力分布特性研究. 铁道学报, 2012,34(7):18-23.

    (Yao Shuanbao, Guo Dilong, Yang Guowei , et al. Distribution of high-speed train aerodynamic drag. Journal of the China Railway Society, 2012,34(7):18-23 (in Chinese))

    [29] Yao SB, Guo DL, Yang GW . Three-dimensional aerodynamic optimization design of high-speed train nose. Sci. China: Tech Sci, 2012,55:3118-3130
    [30] Yao SB, Guo DL. Sun ZX , et al. Optimization design for aerodynamic elements of high speed train. Computers & Fluids, 2014,95(5):56-73
    [31] 龚明, 孙守光, 李强 . 横风环境下高速列车头型的多目标优化设计. 中国铁道科学, 2019(40):97-106.

    (Gong Ming, Sun Shouguang, Li Qiang . Multi-objective optimization design for nose shape of high speed train in cross wind conditions. China Railway Science, 2019(40):97-106 (in Chinese))

    [32] He Z, Xiong XH, Yang B , et al. Aerodynamic optimisation of a high-speed train head shape using an advanced hybrid surrogate-based nonlinear model representation method. Optimization and Engineering, 2020. https://doi.org/10.1007/s11081-020-09554-3
    [33] Munoz-Paniagua J, Garc$acute{i}$a  J. Aerodynamic drag optimization of a high-speed train. Journal of Wind Engineering & Industrial Aerodynamics, 2020,204:104215
    [34] Krajnovi$acute{c}$ S. Shape optimization of high-speed trains for improved aerodynamic performance. Journal of Rail and Rapid Transit, 2009,223(5):439-452
    [35] Iida M, Matsumura T, Nakatani K , et al. Effective nose shape for reducing tunnel sonic boom. Q Rep RTRI, 1997,4(38):206-211
    [36] Sederberg TW, Parry SR . Free-form deformation of solid geometric models. Computer Graphics, 1986,20(4):151-159
    [37] Kwon HB, Jang KH, Kim YS, et al. Nose shape optimization of high-speed train for minimization of tunnel sonic boom. JSME Int.[J]. Ser., 2001,C44(3):890-899
    [38] Sima M, Grappein E, Weise M , et al. Presentation Of The EU Fp7 aerotrain project and first results//9th World Congress on Railway Research. Challenge G: An Even More Competitive and Cost Efficient Railway Lille, France, 2011
    [39] Cui K, Wang XP, Hu SC , et al. Shape optimization of high-speed train with the speed of 500 kph//The 1st International Workshop on High-Speed and Intercity Railways. Beijing. http://www.springerlink.com/content/x046304216g17748,2012
    [40] Yao SB, Guo DL, Yang GW . Three-dimensional optimization design of high-speed train nose based on GA-GRNN. Science China Technological Sciences, 2012,55(11):3118-3130
    [41] Yao SB, Guo DL, Sun ZX , et al. Multi-objective optimization of the streamlined head of high-speed trains based on the Kriging model. Science China Technological Sciences, 2012,55(12):3494-3508
    [42] Sun ZX, Zhang Y, Yang GW . Parametrization of high-speed train streamline shape//ASME Fluids Engineering Division Summer Meeting, Waikoloa, Hi, Jul 30-Aug 03, 2017
    [43] Rho JH, Ku YC, Yun SH , et al. Development of vehicle modeling function for 3-Dimensional shape optimization. Journal of Mechanical Design, 2009,131(12): 121004-1-10
    [44] Ku YC, Kwak MH, Park HI , et al. Multi-objective optimization of high-speed train nose shape using the vehicle modeling function//48th AIAA Aerospace Sciences Meeting, Orlando, USA, 2010
    [45] Yao SB, Guo DL, Sun ZX , et al. Parametric design and optimization of high-speed train nose. Optimization and Engineering, 2016,17(3):605-630
    [46] Vapnik VN . The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
    [47] Suykens JAK, De Brabanter J, Lukas L , et al. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 2002,48(1):85-105
    [48] Yao SB, Guo DL, Sun ZX , et al. A modified multi-objective sorting particle swarm optimization and its application to the design of the nose shape of a high-speed train. Engineering Applications of Computational Fluid Mechanics, 2015,9(1):513-527
    [49] Zhang Y, Yang GW, Guo DL , et al. A novel CACOR-SVR optimization approach and its application in 3D engineering design. Soft Computing, 2019,23(13):5035-5051
  • 期刊类型引用(12)

    1. 刘泽琳,汤嘉兴,陈圣怡,陈烨萱,郭铁铮. 基于线激光的轨道门异形曲面点云数据三维重建. 激光与光电子学进展. 2025(08): 169-176 . 百度学术
    2. 刘万明,刘洁鑫,李锦信. 既有高速铁路隧道对开行高速磁浮列车适用性. 综合运输. 2024(04): 15-22 . 百度学术
    3. 刘慧芳,李雪亮,施柱,朱颖谋,罗一翔. 全隧道高速市域动车组气动外形优化研究. 铁道科学与工程学报. 2023(04): 1180-1188 . 百度学术
    4. 郭裕钧,杨晨光,张血琴,赵康翔,丁晨阳,吴广宁. 动车车顶绝缘子气动减阻优化及绝缘性能研究. 高电压技术. 2023(05): 1917-1926 . 百度学术
    5. 过加锦,李磊,任俞霏,马祯. 融合信号分解与排列熵的高铁线路风速区间预测方法. 交通科技与经济. 2023(04): 74-80 . 百度学术
    6. 李怡,牛文洁,姬鹏. 高速列车头型的谱系化预测与设计. 包装工程. 2023(16): 188-197+229 . 百度学术
    7. 姚拴宝,陈大伟,韩运动,宋军浩,帅仁忠. 高速列车车门凹腔结构的流致振动特性. 中国铁道科学. 2023(05): 158-168 . 百度学术
    8. 李付星. 面向可持续运行的高速列车设计方法. 机械设计与研究. 2023(05): 210-218+224 . 百度学术
    9. 丁杰,尹亮. 动车组受电弓检测装置的气动特性分析. 铁道科学与工程学报. 2022(03): 616-624 . 百度学术
    10. 贺冠强,刘永江,李华,陈力铭. 基于Kriging代理模型的变流器吊耳结构强度分析与优化. 机车电传动. 2022(04): 104-110 . 百度学术
    11. 郭涵,李天赠,李南馨,张祖铭,张杰. 基于有利特征筛选与风阻仿真分析的摩托车头盔造型设计. 机械设计. 2021(08): 124-132 . 百度学术
    12. 房明,肖飞,张晓涵,李田. 空调安装间距对市域列车气动阻力的影响分析. 制冷与空调(四川). 2021(05): 664-669 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  1848
  • HTML全文浏览量:  503
  • PDF下载量:  745
  • 被引次数: 31
出版历程
  • 收稿日期:  2020-06-16

目录

    /

    返回文章
    返回