EI、Scopus 收录
中文核心期刊

互逆规划的拓宽和深化及其在结构拓扑优化的应用

铁军, 隋允康, 彭细荣

铁军, 隋允康, 彭细荣. 互逆规划的拓宽和深化及其在结构拓扑优化的应用[J]. 力学学报, 2020, 52(6): 1822-1837. DOI: 10.6052/0459-1879-20-188
引用本文: 铁军, 隋允康, 彭细荣. 互逆规划的拓宽和深化及其在结构拓扑优化的应用[J]. 力学学报, 2020, 52(6): 1822-1837. DOI: 10.6052/0459-1879-20-188
Tie Jun, Sui Yunkang, Peng Xirong. WIDENING AND DEEPENING OF RECIPROCAL PROGRAMMING AND ITS APPLICATION TO STRUCTURAL TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1822-1837. DOI: 10.6052/0459-1879-20-188
Citation: Tie Jun, Sui Yunkang, Peng Xirong. WIDENING AND DEEPENING OF RECIPROCAL PROGRAMMING AND ITS APPLICATION TO STRUCTURAL TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1822-1837. DOI: 10.6052/0459-1879-20-188
铁军, 隋允康, 彭细荣. 互逆规划的拓宽和深化及其在结构拓扑优化的应用[J]. 力学学报, 2020, 52(6): 1822-1837. CSTR: 32045.14.0459-1879-20-188
引用本文: 铁军, 隋允康, 彭细荣. 互逆规划的拓宽和深化及其在结构拓扑优化的应用[J]. 力学学报, 2020, 52(6): 1822-1837. CSTR: 32045.14.0459-1879-20-188
Tie Jun, Sui Yunkang, Peng Xirong. WIDENING AND DEEPENING OF RECIPROCAL PROGRAMMING AND ITS APPLICATION TO STRUCTURAL TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1822-1837. CSTR: 32045.14.0459-1879-20-188
Citation: Tie Jun, Sui Yunkang, Peng Xirong. WIDENING AND DEEPENING OF RECIPROCAL PROGRAMMING AND ITS APPLICATION TO STRUCTURAL TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1822-1837. CSTR: 32045.14.0459-1879-20-188

互逆规划的拓宽和深化及其在结构拓扑优化的应用

基金项目: 1) 国家自然科学基金资助项目(11672103)
详细信息
    作者简介:

    4) 彭细荣,教授,主要研究方向:结构多学科优化. E-mail: pxr568@163.com
    3) 隋允康,教授,主要研究方向:结构多学科优化. E-mail: ysui@bjut.edu.cn;
    2) 铁军,副教授,主要研究方向:运筹学与控制论,结构多学科优化. E-mail: tielaoshi@sina.com;

    通讯作者:

    铁军

    隋允康

    铁军,隋允康,彭细荣

  • 中图分类号: O343.1

WIDENING AND DEEPENING OF RECIPROCAL PROGRAMMING AND ITS APPLICATION TO STRUCTURAL TOPOLOGY OPTIMIZATION

  • 摘要: 本文的工作涉及数学与力学两方面,数学方面:(1) 将数学规划论中新提出的互逆规划,从 s-m 型 (或称为 m-s 型) 发展出 s-s 型和 m-m 型互逆规划 (其中 s 意为单目标,m 意为多目标),从而使互逆规划的定义完备成为 3 种;(2) 从 KKT 条件审视互逆规划的两方面,得到了互逆规划双方求解涉及拟同构和拟同解的 3 个定理,并且予以证明,提供了在求解中对于互逆规划双方在求解中相互借鉴的理论基础;(3) 对一对互逆规划双方皆合理的情况和某一方不合理的情况,皆给出了求解策略和具体解法. 力学方面:(1) 给出结构优化设计模型合理与否的诠释;(2) 在互逆规划对结构拓扑优化的应用中,提出了不合理结构拓扑优化模型的求解策略;(3) 给出了借助 MVCC 模型 (多个柔顺度约束下的体积最小化) 解决 MCVC 模型 (对于给定体积下的多个柔顺度的最小化) 的途径,其中的建模基于 ICM (独立连续映射) 方法. 用 Matlab 编程给出了数值算例. 其中两个数学问题图示了互逆规划的双方关系;其中,结构拓扑优化问题是众多结构拓扑优化中的两个个案;数值结果均支持了本文提出的互逆规划理论.
    Abstract: The work of this paper involves two aspects of mathematics and mechanics. In terms of mathematics: (1) The reciprocal programming newly proposed in the mathematical programming theory is developed from the s-m type (or called m-s type) to the s-s type and m-m type reciprocal programming (among which s means single goal, m means multiple goals), so that the definition of reciprocal programming is complete into three types; (2) From the KKT condition to examine the two aspects of reciprocal programming, it is obtained that the three theorems of two sides of reciprocal programming which involves quasi-isomorphism theorem and quasi-simultaneous solution theorems. Moreover, the proofs of the three theorems provide a theoretical basis for the two parties to reference and compare from each other in the solution of reciprocal programming; (3) Respectively, the solution strategies and detailed solutions are given for the case where both sides of a pair of reciprocal programming are reasonable ,and the case where one aspect is unreasonable while the other is reasonable. In terms of mechanics: (1) This paper gives the explanation of whether the structural optimization design model is reasonable or not; (2) In the application of reciprocal programming to structural topology optimization, a solution strategy for unreasonable structural topology optimization models is proposed; (3) A way to solve the MCVC model (the minimization of multiple compliances under a given volume) with the help of the MVCC model (Minimization of the volume under multiple compliance constraints), where the modeling is based on the ICM (Independent Continuous Mapping) method. At the end of this article, four numerical examples are given by Matlab codes, where two of the mathematical programming problems illustrate the relationship between the two sides of reciprocal programming, and two of structural topology optimization problems is two cases in many structural topology optimization problems. The numerical results support the reciprocal programming theory proposed in this paper.
  • [1] Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988,71(2):197-224
    [2] Mlejnek HP. Some aspects of the genesis of structures. Structural Optimization, 1992,5(1-2):64-69
    [3] Bendsoe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. NewYork: Springer-Berlin-Heidelberg, 2003
    [4] 隋允康. 建模$\cdot $变换$\cdot $优化: 结构综合方法新进展. 大连: 大连理工大学出版社, 1996
    [4] ( Sui Yunkang. Modeling, Transformation and Optimization - New Development of Structural Synthesis Method. Dalian: Dalian University of Technology Press, 1996 (in Chinese))
    [5] 隋允康, 叶红玲. 连续体结构拓扑优化的 ICM 方法. 北京: 科学出版社, 2013
    [5] ( Sui Yunkang., Ye Hongling. Continuum Topology Optimization ICM Method. Beijing: Science Press, 2013 (in Chinese))
    [6] Sui YK, Peng XR. Modeling, Solving and Application for Topology Optimization of Continuum Structures, ICM Method Based on Step Function. Elsevier, 2018
    [7] Xie YM, Steven GP. A simple evolutionary procedure for structural Optimization. Computers and Structure, 1993,49(5):885-896
    [8] Osher S, Sethian J. Fronts propagating with curvature dependent speed-algorithms based on hamilton-jacobi formulations. J Comput Phys, 1988,79(1):12-49
    [9] Wei P, Li ZY, Li XP, et al. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Structural and Multidisciplinary Optimization, 2018,58(2):831-849
    [10] Norato J, Bends?e M, Haber R, et al. A topological derivative method for topology optimization. Structural and Multidisciplinary Optimization, 2007,33(4-5):375-386
    [11] Cai SY, Zhang WH. An adaptive bubble method for structural shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 2020,360:1-25
    [12] Bourdin B, Chambolle A. Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations, 2003,9(8):19-48
    [13] Guo X, Zhang WS, Zhang J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Computer Methods in Applied Mechanics and Engineering, 2016,310(10):711-748
    [14] Bourdin B, Chambolle A, Zhang WS, et al. A new three-dimensional topology optimization method based on moving morphable components (MMCs). Computational Mechanics, 2017,59(4):647-665
    [15] Zhang WH, Zhao LY, Gao T, et al. Topology optimization with closed B-splines and Boolean operations. Computer Methods in Applied Mechanics and Engineering, 2017,315(3):652-670
    [16] Luo YJ, Bao JW. A material-field series-expansion method for topology optimization of continuum structures. Computers and Structures, 2019,225. DOI: 10.1016/j.compstruc.2019.106122
    [17] Rozvany GIN. A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 2009,37(3):217-237
    [18] Sigmund O, Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization, 2013,48(6):1031-1055
    [19] Yi GL, Sui YK. Different effects of economic and structural performance indicators on model construction of structural topology optimization. Acta Mechanica Sinia, 2015,31(9):1-12
    [20] 彭细荣, 隋允康. 应该为结构拓扑优化的设计变量正名和处理方法顺言. 北京工业大学学报, 2016,42(12):27-37
    [20] ( Peng Xirong, Sui Yunkang. Name correction for design variable of structural topology optimization and presentation of its corresponding treatment method. Journal of Beijing University of Techology, 2016,42(12):27-37 (in Chinese))
    [21] 彭细荣, 隋允康. 对连续体结构拓扑优化合理模型的再探讨. 固体力学学报, 2016,37(1):1-11
    [21] ( Peng Xirong, Sui Yunkang. A further discussion on rational topology optimization models for continuum structures. Chinese Journal of Solid Mechanics, 2016,37(1):1-11 (in Chinese))
    [22] Fleury C. Structural weight optimization by dual methods of convex programming. International Journal for Numerical Methods in Engineering, 1979,14(2):1761-1783
    [23] Fleury C. Primal and dual methods in structural optimization. Journal of the Structural Division, 1980,106(5):1117-1133
    [24] Fleury C, Braibant V. Structural optimization: A new dual method using mixed variables. International Journal for Numerical Methods in Engineering, 1986,23(3):409-428
    [25] 黄红选, 韩继业. 数学规划. 北京: 清华大学出版社, 2006
    [25] ( Huang Hongxuan, Han Jiye. Mathematical Programming. Beijing: Tsinghua University Press, 2006 (in Chinese))
    [26] 隋允康, 彭细荣, 叶红玲 等. 互逆规划理论及其用于建立结构拓扑优化的合理模型. 力学学报, 2019,51(6):1940-1948
    [26] ( Sui Yunkang, Peng Xirong, Ye Hongling, et al. Reciprocal programming theory and its application to establish a reasonable model of structural topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1940-1948 (in Chinese))
    [27] 隋允康, 于新. K-S 函数与模函数法的统一. 大连理工大学学报, 1998,38(5):502-505
    [27] ( Sui Yunkang, Yu Xing. Uniform of K-S function and norm function. Journal of Dalian University of Technology, 1998,38(5):502-505 (in Chinese))
    [28] Jun T, Sui YK. Topology optimization using parabolic aggregation function with independent-continuous-mapping method. Mathematical Problems in Engineering, 2013,2013(3):1-18
    [29] 钱令希, 钟万勰, 程耿东 等. 工程结构优化设计的一个新途径——序列二次规划 SQP. 计算结构力学及其应用, 1984,1(1):7-20
    [29] ( Qian Lingxi, Zhong Wanxie, Cheng Gendong, et al. An approach to structural optimization--sequential quadratic programming, SQP. Computational Structural Mechanics and Applications, 1984,1(1):7-20 (in Chinese))
    [30] 隋允康, 彭细荣. 求解一类可分离凸规划的对偶显式模型 DP-EM 方法. 力学学报, 2017,49(5):1135-1144
    [30] ( Sui Yunkang, Peng Xirong. A dual explicit model based DP-EM method for solving a class of separable convex programming. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1135-1144 (in Chinese))
    [31] Sui YK, Peng XR. Explicit model of dual programming and solving method for a class of separable convex programming problems. Engineering Optimization, 2019,51(7-9):1604-1625
  • 期刊类型引用(5)

    1. 彭细荣,隋允康,叶红玲,铁军. 比较基于化整交融应力拓扑优化诸解法的效果. 力学学报. 2022(02): 459-470 . 本站查看
    2. 彭细荣,隋允康,叶红玲,铁军. K-S函数集成局部性能约束的结构拓扑优化二阶逼近解法. 固体力学学报. 2022(03): 307-317 . 百度学术
    3. 文明,王栋. 连接组合结构协同动力学拓扑优化设计. 力学学报. 2022(11): 3127-3135 . 本站查看
    4. 王栋. 载荷作用位置不确定条件下结构动态稳健性拓扑优化设计. 力学学报. 2021(05): 1439-1448 . 本站查看
    5. 隋允康,彭细荣,叶红玲,李宗翰. 结构拓扑优化局部性能约束下轻量化问题的互逆规划解法. 计算力学学报. 2021(04): 479-486 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1419
  • HTML全文浏览量:  326
  • PDF下载量:  75
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-06-02
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回