EI、Scopus 收录
中文核心期刊

低轨纳卫星质量矩姿态控制技术研究

胡远东, 陆正亮, 廖文和

胡远东, 陆正亮, 廖文和. 低轨纳卫星质量矩姿态控制技术研究[J]. 力学学报, 2020, 52(6): 1599-1609. DOI: 10.6052/0459-1879-20-116
引用本文: 胡远东, 陆正亮, 廖文和. 低轨纳卫星质量矩姿态控制技术研究[J]. 力学学报, 2020, 52(6): 1599-1609. DOI: 10.6052/0459-1879-20-116
Hu Yu, Lu Zhengliang. ATTITUDE CONTROL TECHNOLOGY FOR MASS MOMENT NANO-SATELLITE IN LOW EARTH ORBIT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1599-1609. DOI: 10.6052/0459-1879-20-116
Citation: Hu Yu, Lu Zhengliang. ATTITUDE CONTROL TECHNOLOGY FOR MASS MOMENT NANO-SATELLITE IN LOW EARTH ORBIT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1599-1609. DOI: 10.6052/0459-1879-20-116

低轨纳卫星质量矩姿态控制技术研究

基金项目: 1) 国家自然科学基金(61803204);江苏省研究生科研与实践创新计划(KYCX20_0304)
详细信息
    作者简介:

    2) 陆正亮, 讲师, 主要研究方向: 微纳卫星姿态确定与控制系统. E-mail: 112010115@njust.edu.cn

    通讯作者:

    陆正亮

  • 中图分类号: V448.22+2

ATTITUDE CONTROL TECHNOLOGY FOR MASS MOMENT NANO-SATELLITE IN LOW EARTH ORBIT

  • 摘要: 针对气动力矩严重影响低轨纳卫星姿态控制效果的问题,创新性地提出了利用质量矩技术将气动干扰转化为控制力矩的解决方法.由于气动力矩矢量垂直于大气来流速度方向,因而采用质量矩与磁力矩相结合的方式三轴全驱动控制卫星姿态,从而避免系统欠驱动. 建立双执行机构控制方式的姿态动力学模型,并根据各干扰项的影响简化了控制方程.针对气动力不确定、星体参数误差、未知环境影响等复杂干扰,设计了针对理想控制力矩基于干扰观测器的滑模控制器. 为减小滑块附加干扰力矩,研究了理想控制力矩的最优分配策略. 最后, 为双执行机构搭建了半物理仿真平台,结果表明: 姿态机动过程中, 与滑块加速度相关的附加惯性力矩远大于其他干扰项,最优力矩分配策略能够大幅减小快时变的附加干扰, 优化效果明显; 姿态保持过程中,干扰观测器能有效观测系统慢时变干扰, 提高滑模控制律的姿态控制精度,姿态角收敛误差小于$\pm $0.1$^\circ$.最终验证了在低轨纳卫星上利用质量矩技术控制姿态的可行性.
    Abstract: Due to the high aero to inertia ratio and the presence of strong aerodynamic forces, the low Earth orbit nanosatellites are not very appropriate to depend on a set of momentum wheels for attitude controlling. A method of utilizing aerodynamic disturbance torque as control input based on mass moment technology is innovatively proposed for the Nano-satellite in the low Earth orbit to solve the problem of the external aerodynamic force. The exclusive use of moving mass actuator would lead to an underactuated as the aerodynamic torque was perpendicular to the relative flow vector. To achieve full three-axis stabilization, a three-axis magnetorquer is used to complement the moving mass system to generate a torque along the orbital velocity. The whole dynamic equations are derived, which describes the system with two actuators, the movable mass and the magnetorquer, actuating simultaneously. According to the influence of disturbance items, the equations are simplified. Considering the uncertainty of the aerodynamic forces, the error of system parameters, and unknown environmental disturbance, a sliding mode control scheme based on disturbance observer is designed for ideal control input. An optimal torque allocation strategy is designed in order to generate the torque determined by the aforementioned nonlinear control law by moving the masses and commanding the magnetotorquer, and therefore combining the subspace of two actuators. Finally, a semi-physical simulation platform was built for two actuators and the results indicate that, additional inertia torque, related to the mass acceleration, is the main disturbance torque during the attitude maneuver and can be significantly reduced by optimal torque decomposition strategy. Meanwhile, during the attitude maintenance, the disturbance observer can effectively observe the system disturbances and improve the attitude control accuracy. The error of attitude angle is less than $\pm $0.1$^\circ$. The results verify the feasibility of the use of the moving mass actuator to actively control the aerodynamic torque.
  • [1] 曹登庆, 白坤朝, 丁虎, 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):9-21
    [1] ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Research progress in dynamics and vibration control of large flexible spacecraft. Acta Mechanica Sinica, 2019,51(1):9-21 (in Chinese))
    [2] Zhang XH, Zhang X, Lu ZL, et al. Optimal path planning-based finite-time control for agile CubeSat attitude maneuver. IEEE Access, 2019,7:102186-102198
    [3] 魏鹏鑫, 高长生, 荆武兴. 质量矩控制飞行器的压心不确定性问题研究. 航天控制, 2012,30(2):39-45
    [3] ( Wei Pengxin, Gao Changsheng, Jing Wuxing. The research on the uncertainty of pressure center for moving mass actuated vehicle. Aerospace Control, 2012,30(2):39-45 (in Chinese))
    [4] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169
    [4] ( Zhu An, Chen Li. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))
    [5] Firuzi S, Gong S. Attitude control of a flexible solar sail in low Earth orbit. Journal of Guidance, Control, and Dynamics, 2018,41:1715-1730
    [6] Childs DW. A movable-mass attitude-stabilization system for artificial-g space stations. Journal of Spacecraft Rockets, 1971,8(8):829-834
    [7] Edwards TL. Automatic spacecraft detumbling by internal mass motion. AIAA Journal, 1974,12(4):496-502
    [8] Bainum PM, Sellappan R. The use of a movable telescoping end mass system for the time-optimal control of spinning spacecraft. Acta Astronautica, 1978,5(1):781-795
    [9] Kunciw BG, Kaplan MH. Optimal space station detumbling by internal mass motion. Automatica, 1976,12:417-425
    [10] Guo P, Zhao L. Modeling and attitude control of a spinning spacecraft with internal moving mass. Advanced Materials Research, 2013,760:1216-1220
    [11] Kumar KD, Zhou AM. Attitude control of miniature satellites using movable masses// SpaceOps 2010 Conf. , Huntsville, Alabama, USA, Apr. 2010, Paper AIAA 2010-1982
    [12] Atkins BM, Henderson TA. Under-actuated moving mass attitude control for a 3U CubeSat mission// 22nd Spaceflight mechanics., Charleston, South Carolina, Jan. 2012, vol. 143, pp. 2083-2094
    [13] Daniel EH. Dynamics and control of spinning spacecraft using translating masses with friction conpensation. Journal of Spacecraft and Rockets, 2017,54(6):1376-1381
    [14] Shahin F, Gong S. Attitude control of a flexible solar sail in low earth orbit. Journal of Guidance Control and Dynamics, 2018, 1715-1729
    [15] Thomas S, Paluszek M, Wie B. Design and simulation of sailcraft attitude control systems using the solar sail control toolbox// AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2004,4890:16-19
    [16] Wie B. Solar sail attitude control and dynamics, part two. Journal of Guidance, Control, and Dynamics, 2004,27(4):536-544
    [17] Wie B, Murphy D. Solar-sail attitude control design for a flight validation mission. Journal of Spacecraft and Rockets, 2007,44(4):809-821
    [18] 尹婷婷, 邓子辰, 胡伟鹏 等. 空间刚性杆弹簧组合结构轨道、姿态耦合动力学分析. 力学学报, 2018,5(1):87-98
    [18] ( Yin Tingting, Deng Zichen, Hu Weipeng, et al. Dynamic modelling and simulation of orbit and attitude coupling problems for structure combined of spatial rigid rods and spring. Acta Mechanica Sinica, 2018,50(1):87-98 (in Chinese))
    [19] 陆正亮, 张翔, 于永军 等. 立方体卫星质量矩姿态控制建模和布局优化. 系统工程与电子技术, 2017,39(3):599-605
    [19] ( Lu Zhengliang, Zhang Xiang, Yu Yongjun, et al. Modeling and layout optimization of mass moment attitude control for cube satellite. Systems Engineering and Electronics, 2017,39(3):599-605 (in Chinese))
    [20] 陆正亮, 张翔, 于永军 等. 纳卫星变轨段质量矩姿态控制系统设计. 宇航学报, 2017, 38(6): 320778(1-9)
    [20] ( Lu Zhengliang, Zhang Xiang, Yu Yongjun, et al. Design of attitude control system of mass moment in orbit changing section of nanosatellite. Acta Aeronautica et Astrinautica Sinica, 2017, 38(6): 320778(1-9)(in Chinese))
    [21] Petsopoulos T, Regan FJ, Barlow J. Moving-mass roll control system for fixed-trim re-entry vehicle. Journal of Spacecraft and Rockets, 1996,33(1):56-60
    [22] 陆正亮. 快速机动卫星质量矩姿态控制技术研究. [博士论文]. 南京: 南京理工大学, 2017
    [22] ( Lu Zhengliang. Research on attitude control technology of mass moment for fast maneuvering satellite. [PhD Thesis]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese))
    [23] Chesi S. Attitude control of nanosatellites using shifting masses. [PhD Thesis]. Santa Cruz: University of California, 2015
    [24] Chesi S, Gong Q, Romano M. Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting. Journal of Guidance, Control and Dynamics, 2017,40(07):1613-1626
    [25] Virgili-Llop J Polat H. Using shifting masses to reject aerodynamic perturbations and to maintain a stable attitude in very low earth orbit// 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, 2016, AAS 16-354, 2129-2148
    [26] Polat H. Prototype design and mission analysis for a small satellite exploiting environment disturbances for attitude stabilization. [PhD Thesis]. Monterey: Naval Postgraduate School, 2016
    [27] Virgili-Llop J, Polat H, Romano M. Attitude stabilization of spacecraft in very low earth orbit by center-of-mass shifting. Frontiers in Robotics and AI, 2019,6(7):1-19
    [28] 刘金琨. 滑模变结构控制MATLAB仿真: 基本理论与设计方法. 北京: 清华大学出版社, 2015
    [28] ( Liu Jinkun. Sliding Mode Control Design and MATLAB Simulation: The Basic Theory and Design Method. Beijing: Tsinghua University Press, 2015 (in Chinese))
    [29] 刘金琨. 滑模变结构控制MATLAB仿真: 先进控制系统设计方法. 北京: 清华大学出版社, 2015
    [29] ( Liu Jinkun. Sliding Mode Control Design and MATLAB Simulation: The Design Method of Advanced Control System. Beijing: Tsinghua University Press, 2015 (in Chinese))
    [30] Hu Q, Li B, Qi M. Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation. Aerospace Science and Technology, 2014,39(1):13-21
    [31] Petros AI, Jing S. Robust Adaptive Control. PTR Prentice-Hall, 1996: 75-76
  • 期刊类型引用(2)

    1. 梁日芳. 低轨卫星导航增强系统半物理仿真平台设计. 电子产品世界. 2024(07): 37-39 . 百度学术
    2. 李明群,雷拥军,蒋庆华. 一种微纳卫星的姿态安全控制方案. 航天控制. 2024(04): 16-21 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1218
  • HTML全文浏览量:  212
  • PDF下载量:  99
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-04-13
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回