EI、Scopus 收录
中文核心期刊

近地小行星极短弧定轨的进化算法研究

李鑫冉, 赵海斌

李鑫冉, 赵海斌. 近地小行星极短弧定轨的进化算法研究[J]. 力学学报, 2021, 53(3): 902-911. DOI: 10.6052/0459-1879-20-084
引用本文: 李鑫冉, 赵海斌. 近地小行星极短弧定轨的进化算法研究[J]. 力学学报, 2021, 53(3): 902-911. DOI: 10.6052/0459-1879-20-084
Li Xinran, Zhao Haibin. STUDY ON EVOLUTIONARY ALGORITHMS FOR INITIAL ORBIT DETERMINATION OF NEAR-EARTH ASTEROIDS WITH TOO-SHORT-ARC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 902-911. DOI: 10.6052/0459-1879-20-084
Citation: Li Xinran, Zhao Haibin. STUDY ON EVOLUTIONARY ALGORITHMS FOR INITIAL ORBIT DETERMINATION OF NEAR-EARTH ASTEROIDS WITH TOO-SHORT-ARC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 902-911. DOI: 10.6052/0459-1879-20-084
李鑫冉, 赵海斌. 近地小行星极短弧定轨的进化算法研究[J]. 力学学报, 2021, 53(3): 902-911. CSTR: 32045.14.0459-1879-20-084
引用本文: 李鑫冉, 赵海斌. 近地小行星极短弧定轨的进化算法研究[J]. 力学学报, 2021, 53(3): 902-911. CSTR: 32045.14.0459-1879-20-084
Li Xinran, Zhao Haibin. STUDY ON EVOLUTIONARY ALGORITHMS FOR INITIAL ORBIT DETERMINATION OF NEAR-EARTH ASTEROIDS WITH TOO-SHORT-ARC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 902-911. CSTR: 32045.14.0459-1879-20-084
Citation: Li Xinran, Zhao Haibin. STUDY ON EVOLUTIONARY ALGORITHMS FOR INITIAL ORBIT DETERMINATION OF NEAR-EARTH ASTEROIDS WITH TOO-SHORT-ARC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 902-911. CSTR: 32045.14.0459-1879-20-084

近地小行星极短弧定轨的进化算法研究

基金项目: 1) 中科院先导B项目(XDB41000000);国家自然科学基金(11903085);国家自然科学基金(11633009);国家自然科学基金(11273067);澳门青年学者计划(AM201920);民用航天预研项目(D020304);民用航天预研项目(D020302);中国科学院创新交叉团队、中国科学院红外探测与成像技术重点实验室基金;小行星基金会
详细信息
    作者简介:

    赵海斌, 研究员, 主要研究方向: 太阳系小天体观测和研究, E-mail: meteorzh@pmo.ac.cn
    2) 李鑫冉, 助理研究员, 主要研究方向: 小行星轨道. E-mail: lixr@pmo.ac.cn;

    通讯作者:

    李鑫冉

    赵海斌

  • 中图分类号: P135$^+$.3

STUDY ON EVOLUTIONARY ALGORITHMS FOR INITIAL ORBIT DETERMINATION OF NEAR-EARTH ASTEROIDS WITH TOO-SHORT-ARC

  • 摘要: 近地小行星的巡天项目不断涌现, 得到了海量的观测数据.而巡天观测方式使获得的数据弧段过短, 传统方法在定轨和识别上存在极大困难,加之短弧定轨问题本身的病态性,如何有效利用这些短弧数据对于发现、监测和评估小行星的威胁具有重要意义.在进化算法下构建极短弧定轨的计算框架, 选用三变量的$(a,e,M)$优选法,保持维数较低的同时, 使优化结果不再依赖观测量.采用参数较少、操作简便的差分进化算法,利用不同偏心率小行星的轨道模拟数据进行试验,对获得的最优解及其分布聚集区域进行分析, 大偏心率轨道由于其本身的复杂性,会对算法搜索的灵敏度产生影响, 需缩小搜索空间以提高搜索能力.结果表明算法在小偏心率问题中表现较好,可以得到有效结果为后续工作提供参考信息, 大偏心率问题在传统方法失效的情况下,虽然最优解在整体分布中并不明显, 但分布仍包含真实解,可结合分布密度和适值大小进行分析. 未来需要对大偏心率问题作进一步研究,考虑其观测位置和观测时刻对算法产生的影响, 分类计算.
    Abstract: Surveying projects of near-earth asteroids continue to emerge, and obtain massive observation data. However, this pattern makes the obtained arc too short, and the traditional methods have great difficulty in orbit determination and identification with ill-posed problem in itself when the arc is short. Then how to effectively use these short arc is of great significance for discovering, monitoring and evaluating the threat of asteroids. Under the evolutionary algorithms, a calculation framework for too-short-arc is constructed with three-variable $(a,e,M)$ optimization, which keeps the dimensionality low while makes the optimization results no longer rely on observational measurements. The differential evolution algorithm with fewer parameters and simple operation is used to conduct experiments using orbital simulation data of asteroids with different eccentricity, then the optimal solutions and their aggregation regions are analyzed. The large eccentricity orbits will have an impact on the sensitivity of the algorithm search due to its complexity, it is need to reduce the search space to improve the search ability. The results show that the algorithm performs well in small eccentricity problem, and can obtain valid results to provide information for subsequent work. And for large eccentricity problem, while the traditional method fails, the distribution of the algorithm still contains the real solution. For the phenomenon that the optimal solution is not obvious in the global distribution, it can be analyzed by combining the distribution density and fitness value. Further research on the issue of large eccentricity is needed in the future, the influence of different observation positions and observation time on the algorithm should be considered, and calculate by classification.
  • [1] Schulte P, Alegret L, Arenillas I, et al. The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science, 2010,327:1214-1218
    [2] Proud SR. Reconstructing the orbit of the Chelyabinsk meteor using satellite observations. Geophysical Research Letters, 2013,40(13):3351-3355
    [3] Marcos CDLF, Marcos RDLF. The Chelyabinsk superbolide: a fragment of asteroid 2011 EO40? Monthly Notices of the Royal Astronomical Society, 2013,436(1):15-19
    [4] Yeomans D, Chodas P. Possibility of an Earth Impact in 2029 Ruled Out for Asteroid 2004 MN4 NASA's Near Earth Object Program Office, 2029
    [5] 党雷宁, 柳森, 白智勇, 等, 小行星进入与撞击效应评估模型敏感性研究. 力学学报, 2021,53(1):278-292

    (Dang Leining, Liu Sen, Bai Zhiyong, et al. Shi Yilei. Sensitivity research on models of Earth entry and impact effects by asteroids. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):278-292 (in Chinese))

    [6] Cheng AF, Michel P, Jutzi M, et al. Asteroid impact & deflection assessment mission: Kinetic impactor. Planetary and Space Science, 2016,121:27-35
    [7] Chambers KC, Magnier EA, Metcalfe N, et al. The Pan-STARRS1 Surveys, astro-ph.IM, 2016, arXiv: 1612.05560
    [8] Mikael GA, Robert J. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus, 2018,312(15):181-207
    [9] Mainzer A, Bauer J, Grav T, et al. The population of tiny near-earth objects by NEOWISE. The Astrophysical Journal, 2014,784:110-116
    [10] Grav T, Mainzer AK, Spahr T, et al. Modeling the performance of the lsst in surveying the near-earth object population. Astronomical Journal, 2016,151(6):172-178
    [11] Mainzer A, Grav T, Bauer J, et al. Survey simulations of a new near-earth asteroid detection system. Astronomical Journal, 2015,149(5):172-189
    [12] Milani A, Gronchi GF, Vitturi MD, et al. Orbit determination with very short arcs. I admissible regions. Celestial Mechanics and Dynamical Astronomy, 2004,90(1):57-85
    [13] Milani A, Gronchi GF, Kne?evi? Z, et al. Orbit determination with very short arcs. II Identifications. Celestial Mechanics and Dynamical Astronomy, 2005,179(2):350-374
    [14] 贾沛璋, 吴连大. 论初轨计算的最佳精度及二重解. 天文学报, 1998,39(4):337-343

    (Jia Peizhang, Wu Lianda. On the optimal accuracy and double solution in the calculation of initial orbits. Chinese Astronomy and Astrophysics, 1999,23(3):384-389 (in Chinese))

    [15] 刘林. 航天器轨道理论, 北京: 国防工业出版, 2000

    (Liu Lin. Orbit Theory of Spacecraft. Beijing: National Defend Industry Press, 2000

    [16] 吴连大, 贾沛璋. 初轨计算中的病态分析. 天文学报, 1997,38(3):288-296

    (Wu Lianda, Jia Peizhang. An analysis of the ill-condition in initial orbit determination. Chinese Astronomy and Astrophysics, 1997,38(3):288-296 (in Chinese))

    [17] Tommei G, Milani A, Rossi A. Orbit determination of space debris: admissible regions, Celestial Mechanics & Dynamical Astronomy, 2007,97(4):289-304
    [18] Ansalone L, Curti F. A genetic algorithm for initial orbit determination from a too short arc optical observation. Advances in Space Research, 2013,52:477-489
    [19] 王志胜, 周军, 王道波, 等. 基于角度量观测的卫星初轨计算技术研究. 弹箭与制导学报, 2002,22(4):190-193

    (Wang Zhisheng, Zhou Jun, Wang Daobo, et al. A study on intial orbit determination for satellites based on angle measurements. Journal of Projectiles Rockets, Missiles and Guidance, 2002,22(4):190-193 (in Chinese))

    [20] 刘磊, 郗晓宁, 戎志鹏, 等. 一种稀疏测向数据下的天基初轨确定模型及其算法. 宇航学报, 2009,30(3):870-876

    (Liu L, Xi XN, Rong ZP, et al. An method and corresponding arithmetic of initial orbit determination based on sparse space-based angle measurements. Journal of Astronautics, 2009,30(3):870-876 (in Chinese))

    [21] 李鑫冉, 王歆. 基于遗传算法的极短弧定轨. 天文学报, 2016,57(1):66-77

    (Li Xinran, Wang Xin. Genetic algorithm for initial orbit determination with too short arc (Continued). Chinese Astronomy and Astrophysics, 2016,57(2):181-187 (in Chinese))

    [22] 李鑫冉, 王歆. 基于遗传算法的极短弧定轨(续). 天文学报, 2016,57(2):181-187
    [23] 谢晨月, 袁泽龙, 王建春, 等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021,53(1):1-16

    (Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):1-16 (in Chinese))

    [24] 覃霞, 刘珊珊, 谌亚菁, 等. 基于遗传算法的弹性地基加肋板肋梁无网格优化分析. 力学学报, 2020,52(1):93-110

    (Qin Xia, Liu Shanshan, Shen Yajing, et al. Rib meshless optimization of stiffened plates resting on elastic foundation based on genetic algorithm. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):93-110 (in Chinese))

    [25] De Jong KA. Evolutionary Computation - A Unified Approach. Cambridge: MIT Press, 2006
    [26] Kennedy J, Eberhart R. Particle swarm optimization// Proceedings of IEEE International Conference on Neural Networks IV. 1995: 1942-1948
    [27] Storn R, Price KV. Differential evolution-A simple and efficient heuristic for global optimization over continuous Spaces. Journal of Global Optimization volume, 1997,11(4):341-359
    [28] R?nkk?nen J, Kukkonen S, Price KV. Real-parameter optimization with differential evolution. IEEE Congress on Evolutionary Computation, 2005,1:506-513
    [29] Liu J, Lampinen J. A fuzzy adaptive differential evolution algorithm. Soft Computing, 2005,9(6):448-462
    [30] Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE transactions on Evolutionary Computation, 2009,13(2):398-417
  • 期刊类型引用(6)

    1. 赵洁凝,耿淑娟,王楷铎,李明涛. 小行星2024 RW1撞击分析:从轨道确定到陨落预报. 科学通报. 2025(14): 2190-2196 . 百度学术
    2. 王秀海,胡寿村,赵海斌. 近地小行星轨道误差的统计分析. 天文学报. 2024(05): 61-71 . 百度学术
    3. 王昌涛 ,代洪华 ,张哲 ,汪雪川 ,岳晓奎 . 并行加速的局部变分迭代法及其轨道计算应用. 力学学报. 2023(04): 991-1003 . 本站查看
    4. 刘欣,侯锡云,刘林,甘庆波,杨志涛. 基于智能优化算法的小天体初轨确定. 天文学报. 2023(04): 70-90 . 百度学术
    5. 段成林,盛庆轩,段建锋,王浩宇,慎千慧,陈铭. 梦天实验舱初始轨道快速计算策略与分析. 上海航天(中英文). 2023(05): 30-35 . 百度学术
    6. 赵柯昕,甘庆波,杨志涛,刘静. 近地天体与空间目标初轨确定的多解问题. 系统工程与电子技术. 2022(09): 2914-2921 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1093
  • HTML全文浏览量:  204
  • PDF下载量:  84
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-03-11
  • 刊出日期:  2021-03-09

目录

    /

    返回文章
    返回