[1] | Johnson, William L . Bulk glass-forming metallic alloys: Science and technology. Mrs Bulletin, 1999,24(10):42-56 | [2] | 李彦灼, 汪卫华 . 无序材料中的待解之谜——金属玻璃研究进展. 自然杂志, 2013,35(3):157-166 | [2] | ( Li Yanzhu, Wang Weihua . Puzzles awaiting solutions in amorphous materials: progress of research on metallic glasses. Chinese Journal of Nature, 2013,35(3):157-166 (in Chinese)) | [3] | Klement W, Willens R, Duwez P . Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960,187(4740):869-870 | [4] | Kui HW, Greer AL, Turnbull D . Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984,45(6):615-616 | [5] | Inoue A . Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000,48(1):279-306 | [6] | Wang WH, Dong C, Shek C . Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004,44(2-3):45-89 | [7] | Schuh CA, Hufnagel TC, Ramamurty U . Mechanical behavior of amorphous alloys. Acta Materialia, 2007,55(12):4067-4109 | [8] | Greer AL, Ma E . Bulk metallic glasses: At the cutting edge of metals research. Mrs Bulletin, 2007,32(8):611-615 | [9] | Schroers J . Processing of bulk metallic glass. Advanced Materials, 2010,22(14):1566-1597 | [10] | 汪卫华 . 非晶态物质的本质和特性. 物理学进展, 2013,33(5):177-351 | [10] | ( Wang Weihua . The nature and characteristics of amorphous matter. Progress in Physics, 2013,33(5):177-351 (in Chinese)) | [11] | Ashby MF, Greer AL . Metallic glasses as structural materials. Scripta Materialia, 2006,54(3):321-326 | [12] | Jiang MQ, Dai LH . On the origin of shear banding instability in metallic glasses. Journal of the Mechanics and Physics of Solids, 2009,57(8):1267-1292 | [13] | Jiang MQ, Ling Z, Meng JX , et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philosophical Magazine, 2008,88(3):407-426 | [14] | Lewandowski JJ, Greer AL . Temperature rise at shear bands in metallic glasses. Nature Materials, 2006,5(1):15-18 | [15] | Sun BA, Wang WH . The fracture of bulk metallic glasses. Progress in Materials Science, 2015,74:211-307 | [16] | Lewandowski J, Wang W, Greer A . Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters, 2005,85(2):77-87 | [17] | Sha ZD, Pei QX, Sorkin V , et al. On the notch sensitivity of CuZr metallic glasses. Applied Physics Letters, 2013,103(8):081903 | [18] | Zhou X, Chen C . Atomistic investigation of the intrinsic toughening mechanism in metallic glass. Computational Materials Science, 2016,117:188-194 | [19] | Xu J, Ramamurty U, Ma E . The fracture toughness of bulk metallic glasses. JOM, 2010,62(4):10-18 | [20] | Chen W, Zhou H. F, Liu H. F . et al. Test sample geometry for fracture toughness measurements of bulk metallic glasses. Acta Materialia, 2018,145:477-487 | [21] | Chen W, Liu Z, Ketkaew J , et al. Flaw tolerance of metallic glasses. Acta Materialia, 2016,107:220-228 | [22] | Gu XJ, Poon SJ, Shiflet GJ , et al. Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scripta Materialia, 2009,60(11):1027-1030 | [23] | Launey ME, Busch R, Kruzic JJ . Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Acta Materialia, 2008,56(3):500-510 | [24] | Madge SV, Louzguine-Luzgin DV, Lewandowski JJ , et al. Extrinsic effects and Poisson's ratio of bulk metallic glasses. Acta Materialia, 2012,60(12):4800-4809 | [25] | Shamimi Nouri A, Gu XJ, Poon SJ , et al. Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses. Philosophical Magazine Letters, 2008,88(11):853-861 | [26] | Flores KM, Dauskardt RH . Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scripta Materialia, 1999,41(9):937-943 | [27] | Henann DL, Anand L . Fracture of metallic glasses at notches: Effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness. Acta Materialia, 2009,57(20):6057-6074 | [28] | Conner RD, Rosakis AJ, Johnson W. L , et al. Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scripta Materialia, 1997,37(9):1373-1378 | [29] | Chen W, Ketkaew J, Liu Z , et al. Does the fracture toughness of bulk metallic glasses scatter? Scripta Materialia, 2015,107:1-4 | [30] | Lewandowski JJ . Effects of annealing and changes in stress state on fracture toughness of bulk metallic glass. Materials Transactions, 2001,42(4):633-637 | [31] | Lowhaphandu P, Lewandowski JJ . Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Materialia, 1998,38(12):1811-1817 | [32] | Hess PA, Dauskardt RH . Mechanisms of elevated temperature fatigue crack growth in Zr-Ti-Cu-Ni-Be bulk metallic glass. Acta Materialia, 2004,52(12):3525-3533 | [33] | Johnson WL . Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Materials Science Forum, Trans Tech Publ, 1996, 225-227:35-50 | [34] | Kim CP, Suh JY, Wiest A , et al. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scripta Materialia, 2009,60(2):80-83 | [35] | Gilbert C, Ritchie R, Johnson W . Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Applied Physics Letters, 1997,71(4):476-478 | [36] | Gilbert CJ, Schroeder V, Ritchie RO . Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall Mater Trans A, 1999,30(7):1739-1753 | [37] | Ketkaew J, Liu Z, Chen W , et al. Critical crystallization for embrittlement in metallic glasses. Physical Review Letters, 2015,115(26):265502 | [38] | 刘泽 . 先进微制造力学. 固体力学学报, 2018,39(3):223-247 | [38] | ( Liu Ze . Advanced manufacturing mechanics on the micro-/nanoscale. Chinese Journal of Solid Mechanics, 2018,39(3):223-247 (in Chinese)) | [39] | 罗斌强, 赵剑衡, 谭福利 等. 预压下锆基块体非晶合金的热冲击变形与破坏. 力学学报, 2011,43(1):235-242 | [39] | ( Luo Binqiang, Zhao Jianheng, Tan Fuli , et al. Deformation and fracture of Zr51Ti5Ni10Cu25Al9 bulk metallic glass under rapid heating and pre-load. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(1):235-242 (in Chinese)) | [40] | 李亚波, 宋清源, 杨凯 等. 试样疲劳性能尺度效应的概率控制体积方法. 力学学报, 2019,51(5):1363-1371 | [40] | ( Li Yabo, Song Qingyuan, Yangkai Chen , et al. Probabilistic control volume method for the size effect of specimen fatigue performance. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1363-1371 (in Chinese)) | [41] | 张志杰, 蔡力勋, 陈辉 等. 金属材料的强度与应力-应变关系的球压入测试方法. 力学学报, 2019,51(1):159-169 | [41] | ( Zhang Zhijie, Cai Lixun, Chen Hui , et al. Spherical indentation method to determine stress-strain relations and tensile strength of metallic materials. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):159-169 (in Chinese)) | [42] | 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610 | [42] | ( Wen Longfei, Wang Lixiang, Tian Rong . Accurate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese)) | [43] | Peker A, Johnson WL . A highly processable metallic glass: Zr$_{41}$. 2Ti$_{13}$. 8Cu$_{12}$. 5Ni$_{10}$. 0Be$_{22.5}$. Applied Physics Letters, 1993,63(17):2342-2344 | [44] | Bruck H, Christman T, Rosakis A , et al. Quasi-static constitutive behavior of Zr$_{41}$. 25Ti$_{13}$. 75Ni$_{10}$Cu$_{12}$. 5Be$_{22}$. 5 bulk amorphous alloys. Scripta Metallurgica et Materialia, 1994,30(4):429-434 | [45] | Flores KM, Dauskardt RH . Local heating associated with crack tip plasticity in Zr-Ti-Ni-Cu-Be bulk amorphous metals. Journal of Materials Research, 1999,14(3):638-643 | [46] | Wang WH, Wang RJ, Yang W , et al. Stability of ZrTiCuNiBe bulk metallic glass upon isothermal annealing near the glass transition temperature. Journal of Materials Research, 2002,17(6):1385-1389 | [47] | Hays C, Kim C, Johnson W . Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses. Applied Physics Letters, 1999,75(8):1089-1091 | [48] | Kumar G, Desai A, Schroers J . Bulk metallic glass: the smaller the better. Adv Mater, 2011,23(4):461-476 | [49] | Schroers J . On the formability of bulk metallic glass in its supercooled liquid state. Acta Materialia, 2008,56(3):471-478 | [50] | Xi X, Zhao D, Pan M , et al. Fracture of brittle metallic glasses: Brittleness or plasticity. Physical Review Letters, 2005,94(12):125510 | [51] | 于思淼, 蔡力勋, 姚迪 等. 准静态条件下金属材料的临界断裂准则研究. 力学学报, 2018,50(5):1063-1080 | [51] | ( Yu Simiao, Cai Lixun, Yao Di , et al. The critical strength criterion of metal materials under quasi-static loading. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1063-1080 (in Chinese)) | [52] | Bernard C, Keryvin V, Doquet V , et al. A sequential pre-cracking procedure to measure the mode-I fracture toughness of ultra pure bulk metallic glasses. Scripta Materialia, 2017,141:58-61 | [53] | Anderson TL. Fracture Mechanics: Fundamentals and Applications. Boca Raton: CRC Press, 2005: 1-610 |
|