EI、Scopus 收录
中文核心期刊

非晶合金理想裂纹预制方法及其在小试样$K_{\rm Ic}$测试中的应用

谢怡玲, 刘泽

谢怡玲, 刘泽. 非晶合金理想裂纹预制方法及其在小试样$K_{\rm Ic}$测试中的应用[J]. 力学学报, 2020, 52(2): 392-399. DOI: 10.6052/0459-1879-19-377
引用本文: 谢怡玲, 刘泽. 非晶合金理想裂纹预制方法及其在小试样$K_{\rm Ic}$测试中的应用[J]. 力学学报, 2020, 52(2): 392-399. DOI: 10.6052/0459-1879-19-377
Xie Yiling, Liu Ze. A GENERAL METHOD TO INTRODUCE PRE-CRACK IN BULK METALLIC GLASSES FOR PLANE STRAIN FRACTURE TOUGHNESS TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 392-399. DOI: 10.6052/0459-1879-19-377
Citation: Xie Yiling, Liu Ze. A GENERAL METHOD TO INTRODUCE PRE-CRACK IN BULK METALLIC GLASSES FOR PLANE STRAIN FRACTURE TOUGHNESS TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 392-399. DOI: 10.6052/0459-1879-19-377
谢怡玲, 刘泽. 非晶合金理想裂纹预制方法及其在小试样$K_{\rm Ic}$测试中的应用[J]. 力学学报, 2020, 52(2): 392-399. CSTR: 32045.14.0459-1879-19-377
引用本文: 谢怡玲, 刘泽. 非晶合金理想裂纹预制方法及其在小试样$K_{\rm Ic}$测试中的应用[J]. 力学学报, 2020, 52(2): 392-399. CSTR: 32045.14.0459-1879-19-377
Xie Yiling, Liu Ze. A GENERAL METHOD TO INTRODUCE PRE-CRACK IN BULK METALLIC GLASSES FOR PLANE STRAIN FRACTURE TOUGHNESS TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 392-399. CSTR: 32045.14.0459-1879-19-377
Citation: Xie Yiling, Liu Ze. A GENERAL METHOD TO INTRODUCE PRE-CRACK IN BULK METALLIC GLASSES FOR PLANE STRAIN FRACTURE TOUGHNESS TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 392-399. CSTR: 32045.14.0459-1879-19-377

非晶合金理想裂纹预制方法及其在小试样$K_{\rm Ic}$测试中的应用

基金项目: 1)国家自然科学基金项目(11602175);武汉市科技局应用基础前沿项目(2019010701011390)
详细信息
    通讯作者:

    刘泽

  • 中图分类号: O344.3

A GENERAL METHOD TO INTRODUCE PRE-CRACK IN BULK METALLIC GLASSES FOR PLANE STRAIN FRACTURE TOUGHNESS TEST

  • 摘要: 介绍了一种简单、低成本且可靠的方法在非晶合金中预制理想裂纹并应用于小试样平面应变断裂韧性的测试.近年来,非晶合金由于高弹性、高强度、耐磨及软磁性等优异性能 展示了广泛的应用前景.断裂韧性作为材料工程应用的一个重要指标,也引起了非晶合金领域的广泛关注. 然而,由于非晶合金的亚稳态结构以及最大可铸造尺寸的限制,目前关于非晶合金断裂韧性的测试还存在较大的挑战.一方面,铸造工艺造成的非晶合金热历史的差异、内部微孔洞和杂质等缺陷以及裂纹预制方式等都会显著影响其断裂韧性测试的可靠性;另一方面,非晶合金可铸造尺寸的限制使得目前绝大多数报导的断裂韧性值都是非平面应变的断裂韧性,导致即使是对于同种非晶合金,所报导的断裂韧性值也存在较大偏差.本文利用非晶合金在过冷液相温度下具有可热塑性成型的特性,对预制有缺口的非晶合金试样进行局部压缩成型,使得预制的缺口裂纹重新闭合形成类似疲劳裂纹的理想裂纹面.基于该方法对Zr基非晶合金进行断裂韧性测试,实验结果表明,随着试样厚度的增加,测试值迅速降低并趋向于一个定值.需要指出的是,通过设计实验使得试样在理想裂纹面区域形成局部凹陷,使得趋于定值的试样厚度远小于平面应变断裂韧性测试标准中的试样厚度要求.
    Abstract: We report a simple, low-cost but robust method to introduce pre-crack in bulk metallic glasses (BMGS) for plane strain fracture toughness test. In recent years, bulk metallic glasses have shown potential and promising engineering application due to their excellent properties such as high elasticity, high strength, wear resistance and soft magnetism. As an important material parameter for engineering application, fracture toughness has also attracted great attention in the BMG community. However, there is still challenge on the fracture toughness test of BMGs because of the metastable nature and limited maximum castable size of BMGs. On the one hand, the casting induced thermal history difference and the defects such as internal micropores and impurity inclusions in BMGs, and the way of crack prefabrication will significantly affect the reliability of the fracture toughness test. On the other hand, limited by the sample size, most of the measured fracture toughness of BMGs are not the plane strain fracture toughness, resulting in the reported values showing large deviation, even for the same amorphous alloy. In this work, pre-notched BMG samples were thermoplastically compressed at the notched region to form ideal crack by creep flow. As an example, the fracture toughness of Zr-based amorphous alloy is tested by this method. The experimental results show that as the sample thickness increasing, the measured toughness decreases quickly and tends to a constant value. It should be pointed out that in the experiments, the local thermoplastic compression is designed to obtain a neck shaped pre-crack, which makes the minimum thickness of the specimen being far less than the required thickness by the plane strain fracture toughness testing standard.
  • [1] Johnson, William L . Bulk glass-forming metallic alloys: Science and technology. Mrs Bulletin, 1999,24(10):42-56
    [2] 李彦灼, 汪卫华 . 无序材料中的待解之谜——金属玻璃研究进展. 自然杂志, 2013,35(3):157-166
    [2] ( Li Yanzhu, Wang Weihua . Puzzles awaiting solutions in amorphous materials: progress of research on metallic glasses. Chinese Journal of Nature, 2013,35(3):157-166 (in Chinese))
    [3] Klement W, Willens R, Duwez P . Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960,187(4740):869-870
    [4] Kui HW, Greer AL, Turnbull D . Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984,45(6):615-616
    [5] Inoue A . Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000,48(1):279-306
    [6] Wang WH, Dong C, Shek C . Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004,44(2-3):45-89
    [7] Schuh CA, Hufnagel TC, Ramamurty U . Mechanical behavior of amorphous alloys. Acta Materialia, 2007,55(12):4067-4109
    [8] Greer AL, Ma E . Bulk metallic glasses: At the cutting edge of metals research. Mrs Bulletin, 2007,32(8):611-615
    [9] Schroers J . Processing of bulk metallic glass. Advanced Materials, 2010,22(14):1566-1597
    [10] 汪卫华 . 非晶态物质的本质和特性. 物理学进展, 2013,33(5):177-351
    [10] ( Wang Weihua . The nature and characteristics of amorphous matter. Progress in Physics, 2013,33(5):177-351 (in Chinese))
    [11] Ashby MF, Greer AL . Metallic glasses as structural materials. Scripta Materialia, 2006,54(3):321-326
    [12] Jiang MQ, Dai LH . On the origin of shear banding instability in metallic glasses. Journal of the Mechanics and Physics of Solids, 2009,57(8):1267-1292
    [13] Jiang MQ, Ling Z, Meng JX , et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philosophical Magazine, 2008,88(3):407-426
    [14] Lewandowski JJ, Greer AL . Temperature rise at shear bands in metallic glasses. Nature Materials, 2006,5(1):15-18
    [15] Sun BA, Wang WH . The fracture of bulk metallic glasses. Progress in Materials Science, 2015,74:211-307
    [16] Lewandowski J, Wang W, Greer A . Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters, 2005,85(2):77-87
    [17] Sha ZD, Pei QX, Sorkin V , et al. On the notch sensitivity of CuZr metallic glasses. Applied Physics Letters, 2013,103(8):081903
    [18] Zhou X, Chen C . Atomistic investigation of the intrinsic toughening mechanism in metallic glass. Computational Materials Science, 2016,117:188-194
    [19] Xu J, Ramamurty U, Ma E . The fracture toughness of bulk metallic glasses. JOM, 2010,62(4):10-18
    [20] Chen W, Zhou H. F, Liu H. F . et al. Test sample geometry for fracture toughness measurements of bulk metallic glasses. Acta Materialia, 2018,145:477-487
    [21] Chen W, Liu Z, Ketkaew J , et al. Flaw tolerance of metallic glasses. Acta Materialia, 2016,107:220-228
    [22] Gu XJ, Poon SJ, Shiflet GJ , et al. Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scripta Materialia, 2009,60(11):1027-1030
    [23] Launey ME, Busch R, Kruzic JJ . Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Acta Materialia, 2008,56(3):500-510
    [24] Madge SV, Louzguine-Luzgin DV, Lewandowski JJ , et al. Extrinsic effects and Poisson's ratio of bulk metallic glasses. Acta Materialia, 2012,60(12):4800-4809
    [25] Shamimi Nouri A, Gu XJ, Poon SJ , et al. Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses. Philosophical Magazine Letters, 2008,88(11):853-861
    [26] Flores KM, Dauskardt RH . Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scripta Materialia, 1999,41(9):937-943
    [27] Henann DL, Anand L . Fracture of metallic glasses at notches: Effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness. Acta Materialia, 2009,57(20):6057-6074
    [28] Conner RD, Rosakis AJ, Johnson W. L , et al. Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scripta Materialia, 1997,37(9):1373-1378
    [29] Chen W, Ketkaew J, Liu Z , et al. Does the fracture toughness of bulk metallic glasses scatter? Scripta Materialia, 2015,107:1-4
    [30] Lewandowski JJ . Effects of annealing and changes in stress state on fracture toughness of bulk metallic glass. Materials Transactions, 2001,42(4):633-637
    [31] Lowhaphandu P, Lewandowski JJ . Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Materialia, 1998,38(12):1811-1817
    [32] Hess PA, Dauskardt RH . Mechanisms of elevated temperature fatigue crack growth in Zr-Ti-Cu-Ni-Be bulk metallic glass. Acta Materialia, 2004,52(12):3525-3533
    [33] Johnson WL . Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Materials Science Forum, Trans Tech Publ, 1996, 225-227:35-50
    [34] Kim CP, Suh JY, Wiest A , et al. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scripta Materialia, 2009,60(2):80-83
    [35] Gilbert C, Ritchie R, Johnson W . Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Applied Physics Letters, 1997,71(4):476-478
    [36] Gilbert CJ, Schroeder V, Ritchie RO . Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall Mater Trans A, 1999,30(7):1739-1753
    [37] Ketkaew J, Liu Z, Chen W , et al. Critical crystallization for embrittlement in metallic glasses. Physical Review Letters, 2015,115(26):265502
    [38] 刘泽 . 先进微制造力学. 固体力学学报, 2018,39(3):223-247
    [38] ( Liu Ze . Advanced manufacturing mechanics on the micro-/nanoscale. Chinese Journal of Solid Mechanics, 2018,39(3):223-247 (in Chinese))
    [39] 罗斌强, 赵剑衡, 谭福利 等. 预压下锆基块体非晶合金的热冲击变形与破坏. 力学学报, 2011,43(1):235-242
    [39] ( Luo Binqiang, Zhao Jianheng, Tan Fuli , et al. Deformation and fracture of Zr51Ti5Ni10Cu25Al9 bulk metallic glass under rapid heating and pre-load. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(1):235-242 (in Chinese))
    [40] 李亚波, 宋清源, 杨凯 等. 试样疲劳性能尺度效应的概率控制体积方法. 力学学报, 2019,51(5):1363-1371
    [40] ( Li Yabo, Song Qingyuan, Yangkai Chen , et al. Probabilistic control volume method for the size effect of specimen fatigue performance. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1363-1371 (in Chinese))
    [41] 张志杰, 蔡力勋, 陈辉 等. 金属材料的强度与应力-应变关系的球压入测试方法. 力学学报, 2019,51(1):159-169
    [41] ( Zhang Zhijie, Cai Lixun, Chen Hui , et al. Spherical indentation method to determine stress-strain relations and tensile strength of metallic materials. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):159-169 (in Chinese))
    [42] 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610
    [42] ( Wen Longfei, Wang Lixiang, Tian Rong . Accurate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))
    [43] Peker A, Johnson WL . A highly processable metallic glass: Zr$_{41}$. 2Ti$_{13}$. 8Cu$_{12}$. 5Ni$_{10}$. 0Be$_{22.5}$. Applied Physics Letters, 1993,63(17):2342-2344
    [44] Bruck H, Christman T, Rosakis A , et al. Quasi-static constitutive behavior of Zr$_{41}$. 25Ti$_{13}$. 75Ni$_{10}$Cu$_{12}$. 5Be$_{22}$. 5 bulk amorphous alloys. Scripta Metallurgica et Materialia, 1994,30(4):429-434
    [45] Flores KM, Dauskardt RH . Local heating associated with crack tip plasticity in Zr-Ti-Ni-Cu-Be bulk amorphous metals. Journal of Materials Research, 1999,14(3):638-643
    [46] Wang WH, Wang RJ, Yang W , et al. Stability of ZrTiCuNiBe bulk metallic glass upon isothermal annealing near the glass transition temperature. Journal of Materials Research, 2002,17(6):1385-1389
    [47] Hays C, Kim C, Johnson W . Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses. Applied Physics Letters, 1999,75(8):1089-1091
    [48] Kumar G, Desai A, Schroers J . Bulk metallic glass: the smaller the better. Adv Mater, 2011,23(4):461-476
    [49] Schroers J . On the formability of bulk metallic glass in its supercooled liquid state. Acta Materialia, 2008,56(3):471-478
    [50] Xi X, Zhao D, Pan M , et al. Fracture of brittle metallic glasses: Brittleness or plasticity. Physical Review Letters, 2005,94(12):125510
    [51] 于思淼, 蔡力勋, 姚迪 等. 准静态条件下金属材料的临界断裂准则研究. 力学学报, 2018,50(5):1063-1080
    [51] ( Yu Simiao, Cai Lixun, Yao Di , et al. The critical strength criterion of metal materials under quasi-static loading. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1063-1080 (in Chinese))
    [52] Bernard C, Keryvin V, Doquet V , et al. A sequential pre-cracking procedure to measure the mode-I fracture toughness of ultra pure bulk metallic glasses. Scripta Materialia, 2017,141:58-61
    [53] Anderson TL. Fracture Mechanics: Fundamentals and Applications. Boca Raton: CRC Press, 2005: 1-610
  • 期刊类型引用(12)

    1. 王子豪,孙铁志,张桂勇. 非定常空化涡旋结构演化及压力波机制的研究. 振动与冲击. 2024(02): 22-31+145 . 百度学术
    2. 葛安亮,李延龙,王新宝,江文亮,李相坤. 网衣清洗空化射流喷嘴仿真试验. 渔业现代化. 2022(02): 18-24 . 百度学术
    3. 陈家成,陈泰然,梁文栋,谭树林,耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报. 2022(05): 1242-1256 . 本站查看
    4. 王宁,周领,李赟杰,潘天文. 黏弹性管道水柱分离弥合水锤有限体积法模型. 力学学报. 2022(07): 1952-1959 . 本站查看
    5. 程怀玉,季斌,龙新平,槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报. 2021(05): 1268-1287 . 本站查看
    6. 朱兵,杨朴. 水翼多模态的空化结构演化与空腔溃灭压力的耦合特性. 上海大学学报(自然科学版). 2021(04): 611-634 . 百度学术
    7. 邱宁,朱涵,周文杰,潘中永,袁寿其,刘祥. 激波传播与云空化脱落过程脉动冲击研究. 农业机械学报. 2021(11): 135-143 . 百度学术
    8. 王巍,张庆典,唐滔,安昭阳,佟天浩,王晓放. 射流对绕水翼云空化流动抑制机理研究. 力学学报. 2020(01): 12-23 . 本站查看
    9. 谢庆墨,陈亮,张桂勇,孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报. 2020(04): 1045-1054 . 本站查看
    10. 黄彪,黄瀚锐,刘涛涛,张孟杰,王国玉. 通气空泡流动特性研究现状及进展. 空气动力学学报. 2020(04): 724-745 . 百度学术
    11. 王畅畅,王国玉,黄彪,张敏弟. 可压缩空化流动空穴演化及压力脉动特性实验研究. 力学学报. 2019(05): 1296-1309 . 本站查看
    12. 王巍,唐滔,卢盛鹏,张庆典,王晓放. 主动射流控制水翼空化的数值模拟与分析. 力学学报. 2019(06): 1752-1760 . 本站查看

    其他类型引用(19)

计量
  • 文章访问数:  1875
  • HTML全文浏览量:  352
  • PDF下载量:  116
  • 被引次数: 31
出版历程
  • 收稿日期:  2019-12-29
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回