EI、Scopus 收录
中文核心期刊

含水合物沉积物多相渗流特性研究进展

蔡建超, 夏宇轩, 徐赛, 田海涛

蔡建超, 夏宇轩, 徐赛, 田海涛. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1): 208-223. DOI: 10.6052/0459-1879-19-362
引用本文: 蔡建超, 夏宇轩, 徐赛, 田海涛. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1): 208-223. DOI: 10.6052/0459-1879-19-362
Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223. DOI: 10.6052/0459-1879-19-362
Citation: Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223. DOI: 10.6052/0459-1879-19-362
蔡建超, 夏宇轩, 徐赛, 田海涛. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1): 208-223. CSTR: 32045.14.0459-1879-19-362
引用本文: 蔡建超, 夏宇轩, 徐赛, 田海涛. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1): 208-223. CSTR: 32045.14.0459-1879-19-362
Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223. CSTR: 32045.14.0459-1879-19-362
Citation: Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223. CSTR: 32045.14.0459-1879-19-362

含水合物沉积物多相渗流特性研究进展

基金项目: 1) 国家自然科学基金(41722403);中央高校基本科研业务费专项资金(2462019YJRC011)
详细信息
    通讯作者:

    蔡建超

  • 中图分类号: TE312

ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS

  • 摘要: 天然气水合物作为一种储量大、无污染的清洁能源近些年受到了广泛关注. 近20年来,中国进行了较大范围的陆海域天然气水合物储层勘探与储量预测.2017年,中国地质调查局牵头对南海神狐海域的天然气水合物进行了基于降压渗流原理的试验性开采.国内外已进行的水合物试采工程面临着气体产量低、出砂较多等问题,其最主要的原因之一是开发过程中沉积物内复杂多相渗流机理尚不明晰.本文综述了平行毛细管模型、Kozeny模型等广泛应用于天然气水合物开发渗流分析的理论模型,对比分析了水合物开发多尺度渗流过程模拟方法,简述了国内外含水合物沉积物渗透率测试、渗流过程中沉积物物性演变以及水合物开采室内模拟等方面的渗流实验进展,总结了矿场尺度的天然气水合物储层开采过程中产气数值模拟手段,展望了多相渗流模型、储层原位含水合物样品室内测试及结构与物性演化、矿场尺度数值模拟与水平井压裂技术等应用研究的未来方向与挑战.
    Abstract: Natural gas hydrate, as a kind of clean and environmental-friendly energy, has large reserves and attract great attention in recent years. In the past 20 years, exploration and reserves prediction for natural gas hydrate reservoirs have been widely conducted within mainland and offshore areas in China. In 2017, China Geological Survey carried out the tentative production for natural gas hydrate based on depressurizing seepage theory in Shenhu Area of the South China Sea. In worldwide, the hydrate tentative production are faced with the typical problems like low gas production and sand production. One of the main reasons is that the complex mechnisams of multiphase flow in sediments during development are still unclear. In this paper, we review parallel capillary model and Kozeny particle model which are widely used in seepage analysis during natural gas hydrate development. Then we analyze the multiscale simulation methods for hydrate seepage and briefly describe experimental advances in terms of permeability measuremnts, evolutionary process for physical properties of sedimens during seepage and laboratory production simulation for hydrate production. Afterwards, we summarize the numerical simulation methods for gas production during the exploitation of gas hydrate reservoirs at the field scale. Future works and challenges are proposed for multiphase seepage model, in situ testing of hydrate samples, evolutionary process for structural and physical properties, field scale numerical simulation and horizontal well fracturing technology applications.
  • [1] Waite WF, Santamarina JC, Cortes DD , et al. Physical properties of hydrate-bearing sediments. Reviews of Geophysics, 2009, 47(4): RG4003
    [2] Sloan ED . Fundamental principles and applications of natural gas hydrates. Nature, 2003,426(6964):353
    [3] Archer D . Methane hydrate stability and anthropogenic climate change. Biogeosciences, 2007,4(4):521-544
    [4] Chong ZR, Yang SHB, Babu P , et al. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 2016,162:1633-1652
    [5] Collett TS . Energy resource potential of natural gas hydrates. AAPG Bulletin, 2002,86(11):1971-1992
    [6] Makogon YF . Natural gas hydrates - A promising source of energy. Journal of Natural Gas Science and Engineering, 2010,2(1):49-59
    [7] Li XS, Xu CG, Zhang Y , et al. Investigation into gas production from natural gas hydrate: A review. Applied Energy, 2016,172:286-322
    [8] Sloan Jr ED, Koh CA. Clathrate Hydrates of Natural Gases. 3rd ed. Florida: CRC Press, 2007
    [9] Ye Y, Liu C . Natural Gas Hydrates: Experimental Techniques and Their Applications. Heidelberg: Springer Science & Business Media, 2012
    [10] Grover T, Holditch SA, Moridis G . Analysis of reservoir performance of Messoyakha gas hydrate field// The Eighteenth International Offshore and Polar Engineering Conference, Vancouver, Canada, July 6-11, 2008
    [11] Makogon Y, Holditch S, Makogon T . Russian field illustrates gas-hydrate production. Oil & Gas Journal, 2005,103(5):43-47
    [12] Boswell R, Collett TS, Frye M , et al. Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 2012,34(1):4-30
    [13] Yamamoto K, Inada N, Kubo S , et al. A pressure coring operation and on-board analyses of methane hydrate-bearing samples// Offshore Technology Conference, Houston, Texas, May 5-8, 2014
    [14] 吴能友, 张海啟, 杨胜雄 等. 南海神狐海域天然气水合物成藏系统初探. 天然气工业, 2007,27(9):1-6
    [14] ( Wu Nengyou, Zhang Haiqi, Yang Shengxiong , et al. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu Area, North Slope of South China Sea. Natural Gas Industry, 2007,27(9):1-6 (in Chinese))
    [15] 张洪涛, 张海启, 祝有海 . 中国天然气水合物调查研究现状及其进展. 中国地质, 2007,34(6):953-961
    [15] ( Zhang Hongtao, Zhang Haiqi, Zhu Youhai . Gas hydrate investigation and research in China: Present status and progress. Geology in China, 2007,34(6):953-961 (in Chinese))
    [16] Li J, Ye J, Qin X , et al. The first offshore natural gas hydrate production test in South China Sea. China Geology, 2018,1(1):5-16
    [17] Moridis GJ, Kowalsky MB, Pruess K . Depressurization-induced gas production from class-1 hydrate deposits. SPE Reservoir Evaluation & Engineering, 2007,10(5):458-481
    [18] Wang Y, Li XS, Li G , et al. Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method. Fuel, 2014,117:688-696
    [19] Eslamimanesh A, Mohammadi AH, Richon D , et al. Application of gas hydrate formation in separation processes: A review of experimental studies. Journal of Chemical Thermodynamics, 2012,46:62-71
    [20] Ohgaki K, Takano K, Sangawa H , et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO$_2$-CH$_4$ mixed hydrate system. Journal of Chemical Engineering of Japan, 1996,29(3):478-483
    [21] Cui Y, Lu C, Wu M , et al. Review of exploration and production technology of natural gas hydrate. Advances in Geo-Energy Research, 2018,2(1):53-62
    [22] 张旭辉, 鲁晓兵 . 一种新的海洋浅层水合物开采法-机械-热联合法. 力学学报, 2016,48(5):1238-1246
    [22] ( Zhang Xuhui, Lu Xiaobong . A new exploitation method for gas hydrate in shallow stratum: Mechanical-thermal method. Chinese Journal of Theoretical and Applied Mechanics, 2019,48(5):1238-1246 (in Chinese))
    [23] 张旭辉, 鲁晓兵, 李鹏 . 天然气水合物开采方法的研究综述. 中国科学:物理学力学天文学, 2019,49(3):38-59
    [23] ( Zhang Xuhui, Lu Xiaobing, Li Peng . A comprehensive review in natural gas hydrate recovery methods. Scienta Sinica: Physica, Mechanica & Astronomica, 2019,49(3):38-59 (in Chinese))
    [24] 宁伏龙, 蒋国盛, 张凌 等. 影响含天然气水合物地层井壁稳定的关键因素分析. 石油钻探技术, 2008,36(3):59-61
    [24] ( Ning Fulong, Jiang Guosheng, Zhang Ling , et al. Analysis of key factors affecting wellbore stability in gas hydrate formations. Petroleum Drilling and Techniques, 2008,36(3):59-61 (in Chinese))
    [25] 李彦龙, 刘乐乐, 刘昌岭 等. 天然气水合物开采过程中的出砂与防砂问题. 海洋地质前沿, 2016,32(7):36-43
    [25] ( Li Yanlong, Liu Lele, Liu Changling , et al. Sanding prediction and sand-control technology in hydrate exploitation: A review and discussion. Marine Geology Frontiers, 2016,32(7):36-43 (in Chinese))
    [26] 刘乐乐, 张旭辉, 刘昌岭 等. 含水合物沉积物三轴剪切试验与损伤统计分析. 力学学报, 2016,48(3):720-729
    [26] ( Liu Lele, Zhang Xuhui, Liu Changling , et al. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3):720-729 (in Chinese))
    [27] 石要红, 张旭辉, 鲁晓兵 等. 南海水合物黏土沉积物力学特性试验模拟研究. 力学学报, 2015,47(3):521-528
    [27] ( Shi Yaohong, Zhang Xuhui, Lu Xiaobing , et al. Experimrental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):521-528 (in Chinese))
    [28] 刘乐乐, 张旭辉, 鲁晓兵 . 天然气水合物地层渗透率研究进展. 地球科学进展, 2012,27(7):733-746
    [28] ( Liu Lele, Zhang Xuhui, Lu Xiaobing . Review on the permeability of hydrate-bearing sediments. Advances in Earth Science, 2012,27(7):733-746 (in Chinese))
    [29] 宋永臣, 黄兴, 刘瑜 等. 含甲烷水合物多孔介质渗透性的实验研究. 热科学与技术, 2010,9(1):51-57
    [29] ( Song Yongchen, Huang Xing, Liu Yu , et al. Experimental study of permeability of porous medium containing methane hydrate. Journal of Thermal Science and Technology, 2010,9(1):51-57 (in Chinese))
    [30] Singh H, Myshakin EM, Seol Y . A nonempirical relative permeability model for hydrate-bearing sediments. SPE Journal, 2019,24(2):547-562
    [31] Daigle H, Cook A, Malinverno A . Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico. Marine and Petroleum Geology, 2015,68:551-564
    [32] Flemings PB, Liu X, Winters WJ . Critical pressure and multiphase flow in Blake Ridge gas hydrates. Geology, 2003,31(12):1057-1060
    [33] Nimblett J, Ruppel C . Permeability evolution during the formation of gas hydrates in marine sediments. Journal of Geophysical Research: Solid Earth, 2003,108(B9):2420
    [34] Priest JA, Druce M, Roberts J , et al. PCATS Triaxial: A new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan. Marine and Petroleum Geology, 2015,66:460-470
    [35] Kleinberg RL, Flaum C, Griffin DD , et al. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. Journal of Geophysical Research: Solid Earth, 2003,108(B10):2508
    [36] Lamb H. Hydrodynamics. 6th ed. New York: Cambridge University Press, 1993
    [37] Masuda Y . Numerical calculation of gas production performance from reservoirs containing natural gas hydrates //Annual Technical Conference, San Antonio, Texas, 1997
    [38] Masuda Y . Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores //Proceedings of the third International Gas Hydrate Conference, Salt Lake City, Utah, USA, 1999
    [39] Hearst JR, Nelson PH . Well Logging for Physical Properties. 2nd ed. New York: John Wiley & Sons, 1985
    [40] Spangenberg E . Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. Journal of Geophysical Research: Solid Earth, 2001,106(B4):6535-6548
    [41] Dai S, Seol Y . Water permeability in hydrate-bearing sediments: A pore-scale study. Geophysical Research Letters, 2014,41(12):4176-4184
    [42] Katagiri J, Konno Y, Yoneda J , et al. Pore-scale modeling of flow in particle packs containing grain-coating and pore-filling hydrates: Verification of a Kozeny-Carman-based permeability reduction model. Journal of Natural Gas Science and Engineering, 2017,45:537-551
    [43] Moridis G, Apps J, Pruess K , et al. EOSHYDR: A TOUGH2 module for CH$_4$-hydrate release and flow in the subsurface //Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, USA, 1998
    [44] van Genuchten MT . A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980,44(5):892-898
    [45] Parker JC, Lenhard RJ, Kuppusamy T . A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 1987,23(4):618-624
    [46] Delli ML, Grozic JLH . Prediction performance of permeability models in gas-hydrate-bearing sands. SPE Journal, 2013,182(2):274-284
    [47] 刘乐乐, 张准, 宁伏龙 等. 含水合物沉积物渗透率分形模型. 中国科学:物理学力学天文学, 2019,49(3):165-172
    [47] ( Liu Lele, Zhang Zhun, Ning Fulong , et al. A fractal model for the relative permeability prediction of hydrate-bearing sediments. Scienta Sinica: Physica, Mechanica & Astronomica, 2019,49(3):165-172 (in Chinese))
    [48] Daigle H . Relative permeability to water or gas in the presence of hydrates in porous media from critical path analysis. Journal of Petroleum Science and Engineering, 2016,146:526-535
    [49] Ning F, Li C, Cai J , et al. Study on the relative permeability of hydrate-bearing sediments by a fractal parallel capillary model //9th International Conference on Gas Hydrates, Denver, Colorado, USA, 2017
    [50] Singh H, Mahabadi N, Myshakin EM , et al. A mechanistic model for relative permeability of gas and water flow in hydrate-bearing porous media with capillarity. Water Resources Research, 2019,55(4):3414-3432
    [51] Liang H, Song Y, Liu Y , et al. Study of the permeability characteristics of porous media with methane hydrate by pore network model. Journal of Natural Gas Chemistry, 2010,19(3):255-260
    [52] Mahabadi N, Jang J . Relative water and gas permeability for gas production from hydrate-bearing sediments. Geochemistry, Geophysics, Geosystems, 2014,15(6):2346-2353
    [53] 车雯, 梁海峰, 孙国庆 等. 天然气水合物沉积层渗流特性的模拟. 化工进展, 2015,34(6):1576-1581
    [53] ( Che Wen, Liang Haifeng, Sun Guoqing , et al. Simulation study on the seepage characteristics of natural gas hydrate sediment. Chemical Industry and Engineering Progress, 2015,34(6):1576-1581 (in Chinese))
    [54] Mahabadi N, Dai S, Seol Y , et al. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation. Geochemistry, Geophysics, Geosystems, 2016,17(8):3099-3110
    [55] Wang J, Zhao J, Zhang Y , et al. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT. Fuel, 2016,163:34-40
    [56] Wang J, Zhao J, Yang M , et al. Permeability of laboratory-formed porous media containing methane hydrate: Observations using X-ray computed tomography and simulations with pore network models. Fuel, 2015,145:170-179
    [57] Ai L, Zhao J, Wang J , et al. Analyzing permeability of the irregular porous media containing methane hydrate using pore Network model combined with CT. Energy Procedia, 2017,105:4802-4807
    [58] 喻西崇, 刘瑜, 宋永臣 等. 基于LBM方法的天然气水合物沉积物中多相流动规律研究. 中国石油大学学报 (自然科学版), 2011,35(5):99-103
    [58] ( Yu Xichong, Liu Yu, Song Yongchen , et al. Study of multiphase flow laws in sediments with gas hydrate based on LBM method. Journal of China University of Petroleum (Edition of Natural Science), 2011,35(5):99-103 (in Chinese))
    [59] Kang DH, Yun TS, Kim KY , et al. Effect of hydrate nucleation mechanisms and capillarity on permeability reduction in granular media. Geophysical Research Letters, 2016,43(17):9018-9025
    [60] Hou J, Ji Y, Zhou K , et al. Effect of hydrate on permeability in porous media: Pore-scale micro-simulation. International Journal of Heat and Mass Transfer, 2018,126:416-424
    [61] Chen X, Verma R, Espinoza DN , et al. Pore-scale determination of gas relative permeability in hydrate-bearing sediments using X-ray computed micro-tomography and lattice Boltzmann method. Water Resources Research, 2018,54(1):600-608
    [62] Zhang L, Zhang C, Zhang K , et al. Pore-scale investigation of methane hydrate dissociation using the lattice Boltzmann method. Water Resources Research, 2019,55(11):8422-8444
    [63] Fang B, Ning F, Ou W , et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study. Fuel, 2019,258:116106
    [64] Yasuoka K, Murakoshi S . Molecular dynamics simulation of dissociation process for methane hydrate. Annals of the New York Academy of Sciences, 2000,912(1):678-684
    [65] Hirai S, Okazaki K, Tabe Y , et al. CO$_2$ clathrate-hydrate formation and its mechanism by molecular dynamics simulation. Energy Conversion Management, 1997,38:S301-S306
    [66] 万丽华, 颜克凤, 李小森 等. 热力学抑制剂作用下甲烷水合物分解过程的分子动力学模拟. 物理化学学报, 2009,25(3):486-494
    [66] ( Wan Lihua, Yan Kefeng, Li Xiaosen , et al. Molecular dynamics simulation of methane hydrate dissociation process in the presence of thermodynamic inhibitor. Acta Physico-Chimica Sinica, 2009,25(3):486-494 (in Chinese))
    [67] Moon C, Taylor PC, Rodger PM . Molecular dynamics study of gas hydrate formation. Journal of the American Chemical Society, 2003,125(16):4706-4707
    [68] Kondori J, Zendehboudi S, Hossain ME . A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective. Journal of Petroleum Science and Engineering, 2017,159:754-772
    [69] Kossel E, Deusner C, Bigalke N , et al. The dependence of water permeability in quartz sand on gas hydrate saturation in the pore space. Journal of Geophysical Research: Solid Earth, 2018,123(2):1235-1251
    [70] Delli ML, Grozic JLH . Experimental determination of permeability of porous media in the presence of gas hydrates. Journal of Petroleum Science and Engineering, 2014,120:1-9
    [71] Johnson A, Patil S, Dandekar A . Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine and Petroleum Geology, 2011,28(2):419-426
    [72] Holland M, Schultheiss P . Comparison of methane mass balance and X-ray computed tomographic methods for calculation of gas hydrate content of pressure cores. Marine and Petroleum Geology, 2014,58:168-177
    [73] Holland ME, Schultheiss PJ, Roberts JA . Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-0$_2$, offshore India. Marine and Petroleum Geology, 2019,108:407-423
    [74] Oshima M, Suzuki K, Yoneda J , et al. Lithological properties of natural gas hydrate--bearing sediments in pressure-cores recovered from the Krishna-Godavari Basin. Marine and Petroleum Geology, 2019,108:439-470
    [75] Yoneda J, Oshima M, Kida M , et al. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna--Godavari Basin, offshore India. Marine and Petroleum Geology, 2019,108:524-536
    [76] Minagawa H, Nishikawa Y, Ikeda I , et al. Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement. Journal of Geophysical Research: Solid Earth, 2008,113(B7):B07210
    [77] Konno Y, Jin Y, Uchiumi T , et al. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments. Review of Scientific Instruments, 2013,84(6):064501
    [78] Marinakis D, Varotsis N, Perissoratis C . Gas hydrate dissociation affecting the permeability and consolidation behaviour of deep sea host sediment. Journal of Natural Gas Science and Engineering, 2015,23:55-62
    [79] Konno Y, Yoneda J, Egawa K , et al. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough. Marine and Petroleum Geology, 2015,66:487-495
    [80] 刘乐乐, 张宏源, 刘昌岭 等. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用. 海洋地质与第四纪地质, 2017,37(5):159-165
    [80] ( Liu Lele, Zhang Hongyuan, Liu Changling , et al. Pressure pulse-decay method and its application to permeability measurement of hydrate-bearing sediments. Marine Geology & Quaternary Geology, 2017,37(5):159-165 (in Chinese))
    [81] 张宏源, 刘乐乐, 刘昌岭 等. 基于瞬态压力脉冲法的含水合物沉积物渗透性实验研究. 实验力学, 2018,33(2):263-271
    [81] ( Zhang Hongyuan, Liu Lele, Liu Changling , et al. Experimental investigation on permeability of hydrate bearing sediments based on pressure pulse method. Journal of Experimental Mechanics, 2018,33(2):263-271 (in Chinese))
    [82] Hyndman RD, Davis EE . A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research: Solid Earth, 1992,97(B5):7025-7041
    [83] Jarrar ZA, Al-Raoush RI, Hannun JA , et al. 3D synchrotron computed tomography study on the influence of fines on gas driven fractures in Sandy Sediments. Geomechanics for Energy and the Environment, 2018 (In press) doi: 10.1016/j.gete.2018.11.001
    [84] Lu C, Xia Y, Sun X , et al. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea. Energies, 2019,12(19):3688
    [85] Kono HO, Narasimhan S, Song F , et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing. Powder Technology, 2002,122(2):239-246
    [86] 李淑霞, 陈月明, 郝永卯 等. 多孔介质中天然气水合物降压开采影响因素实验研究. 中国石油大学学报(自然科学版), 2007,31(4):56-59
    [86] ( Li Shuxia, Chen Yueming, Hao Yongmao , et al. Experimental research on influence factors of natural gas hydrate production by depressurizing in porous media. Journal of China University of Petroleum (Edition of Natural Science), 2007,31(4):56-59 (in Chinese))
    [87] 李淑霞, 李杰, 靳玉蓉 . 不同饱和度的天然气水合物降压分解实验. 化工学报, 2014,65(4):1411-1415
    [87] ( Li Shuxia, Li Jie, Jin Yurong . Depressurizing dissociation of natural gas hydrate with different saturation. Journal of Chemical Industry and Engineering, 2014,65(4):1411-1415 (in Chinese))
    [88] Lee J, Park S, Sung W . An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme. Energy Conversion and Management, 2010,51(12):2510-2515
    [89] Konno Y, Jin Y, Shinjou K , et al. Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment. RSC Advances, 2014,4(93):51666-51675
    [90] Sakamoto Y, Komai T, Kawabe Y , et al. Gas hydrate extraction from marine sediments by heat stimulation method //The Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 2004
    [91] 李淑霞, 李杰, 徐新华 等. 天然气水合物藏注热水开采敏感因素试验研究. 中国石油大学学报(自然科学版), 2014,38(2):99-102
    [91] ( Li Shuxia, Li Jie, Xu Xinhua , et al. Experimental study on influencing factors for hydrate dissociation in a hot brine injection process. Journal of China University of Petroleum (Edition of Natural Science), 2014,38(2):99-102 (in Chinese))
    [92] Wang B, Fan Z, Wang P , et al. Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation. Applied Energy, 2018,227:624-633
    [93] Moridis G . EOSHYDR: A TOUGH2 module for CH4-hydrate release and flow in the subsurface //Methane Hydrates, Chiba, Japan, 1998
    [94] Wilder JW, Moridis GJ, Wilson SJ , et al. An international effort to compare gas hydrate reservoir simulators //Proceedings of 6th International Conference on Gas Hydrates, Vancouver,Canada, 2008
    [95] Zhang K, Moridis G, Wu YS , et al. A domain decomposition approach for large-scale simulations of flow processes in hydrate-bearing geologic media// The 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada, July 6-10, 2008
    [96] Moridis GJ . TOUGH+HYDRATE v1. 2 User's manual: A code for the simulation of system behavior in hydrate-bearing geologic media //Mathane Hydrates, Chiba, Japan, 2012
    [97] Reagan MT, Moridis GJ . Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin. Geophysical Research Letters, 2009,36(23):L23612
    [98] 李刚, 李小森, 陈琦 等. 南海神狐海域天然气水合物开采数值模拟. 化学学报, 2010,68(11):1083-1092
    [98] ( Li Gang, Li Xiaosen, Chen Qi , et al. Numerical simulation of gas production from gas hydrate zone in Shenhu area, South China Sea. Acta Chimica Sinica, 2010,68(11):1083-1092 (in Chinese))
    [99] 李小森, 陈琦, 李刚 等. 海底水合物矿藏降压开采与甲烷气体扩散过程的数值模拟. 现代地质, 2010,24(3):598-606
    [99] ( Li Xiaosen, Chen Qi, Li Gang , et al. The simulation of hydrate production by depressurization in deep ocean. Geoscience, 2010,24(3):598-606 (in Chinese))
    [100] Reagan MT, Moridis GJ, Johnson JN , et al. Field-scale simulation of production from oceanic gas hydrate deposits. Transport in Porous Media, 2015,108(1):151-169
    [101] 胡立堂, 张可霓, 高童 . 南海神狐海域天然气水合物注热降压开采数值模拟研究. 现代地质, 2011,25(4):675-681
    [101] ( Hu Litang, Zhang Keni, Gao Tong . Numerical study of gas production from gas hydrate zone using heat injection and depressurization in Shenhu Area, the South China Sea. Geoscience, 2011,25(4):675-681 (in Chinese))
    [102] Sun J, Ning F, Zhang L , et al. Numerical simulation on gas production from hydrate reservoir at the 1st offshore test site in the eastern Nankai Trough. Journal of Natural Gas Science and Engineering, 2016,30:64-76
    [103] Sun J, Zhang L, Ning F , et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea: A preliminary feasibility study. Marine and Petroleum Geology, 2017,86:447-473
    [104] Yu T, Guan G, Abudula A . Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan. Applied Energy, 2019,251:113338
    [105] Masuda Y, Konno Y, Iwama H , et al. Improvement of near wellbore permeability by methanol stimulation in a methane hydrate production well //Offshore Technology Conference, Houston, Texas, USA, 2008
    [106] Kurihara M, Sato A, Ouchi H , et al. SS gas hydrate: Prediction of production test performances in eastern Nankai Trough methane hydrate reservoirs using 3D reservoir model //Offshore Technology Conference, Houston, Texas, USA, 2010
    [107] Konno Y, Oyama H, Nagao J , et al. Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan. Energy & Fuels, 2010,24(12):6353-6358
    [108] White M, McGrail P . Designing a pilot-scale experiment for the production of natural gas hydrates and sequestration of CO$_{2}$ in class 1 hydrate accumulations. Energy Procedia, 2009,1(1):3099-3106
    [109] Zatsepina O, Pooladi-Darvish M, Hong H . Behavior of gas production from Type III hydrate reservoirs. Journal of Natural Gas Science and Engineering, 2011,3(3):496-504
    [110] Myshakin EM, Gaddipati M, Rose K , et al. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 313 site, northern Gulf of Mexico. Marine and Petroleum Geology, 2012,34(1):169-185
    [111] 李淑霞, 武迪迪, 王志强 等. 神狐水合物藏降压开采分解前缘数值模拟研究. 中国科学: 物理学力学天文学, 2019,49(3):116-126
    [111] ( Li Shuxia, Wu Didi, Wang Zhiqiang , et al. Numerical simulation of dissociation front of Shenhu hydrate reservoirs by depressurization. Scientia Sinica: Physica, Mechanica & Astronomica, 2019,49(3):116-126 (in Chinese))
    [112] 沈海超 . 天然气水合物藏降压开采流固耦合数值模拟研究. [博士论文]. 东营:中国石油大学(华东), 2009
    [112] ( Shen Haichao . Fuuid-solid coupling numerical simulation on natural gas production from hydrate reservoirs by depressurization. [PhD Thesis]. Dongying: China University of Petroluem (East China), 2009 (in Chinese))
    [113] 程远方, 沈海超, 赵益忠 等. 多孔介质中天然气水合物降压分解有限元模拟. 中国石油大学学报(自然科学版), 2009,33(3):85-89
    [113] ( Cheng Yuanfang, Shen Haichao, Zhao Yizhong , et al. Numerical simulation with finite element method on natural gas hydrate decomposition by depressurization in porous media. Journal of China University of Petroleum (Edition of Natural Science), 2009,33(3):85-89 (in Chinese))
    [114] 阮徐可, 李小森, 杨明军 等. 天然气水合物二次生成及渗透率变化对降压开采的影响. 石油学报, 2015,36(5):612-619
    [114] ( Ruan Xuke, Li Xiaosen, Yang Mingjun , et al. Influences of gas hydarte reformation and permeability changes on depressurization recovery. Acta Petrolei Sinica, 2015,36(5):612-619 (in Chinese))
    [115] Liu L, Lu X, Zhang X , et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization. Advances in Geo-Energy Research, 2017,1(3):135-147
  • 期刊类型引用(43)

    1. 宋杰,刘乐乐,刘涛,张永超,杨磊,万义钊. 海洋含气土高应力加卸载变形特征与渗流规律. 力学学报. 2025(02): 545-558 . 本站查看
    2. 刘永革,李果,贾伟,白雅洁,侯健,Clarke M A,徐鸿志,赵二猛,纪云开,陈立涛,郭天魁,贺甲元,张乐. 储层改造对Ⅰ类天然气水合物藏降压开发效果的影响规律. 石油学报. 2024(02): 412-426+460 . 百度学术
    3. 张保勇,赵国建,高霞,吴强. 加卸载条件下含瓦斯水合物煤体应变及渗透率试验研究. 煤炭学报. 2024(03): 1414-1431 . 百度学术
    4. 崔文富. 驱替压力梯度对水驱油田采收率影响研究. 计算物理. 2024(03): 325-333 . 百度学术
    5. 张吉东,殷振元,李清平,李淑霞,焦红梅,刘晓惠. 基于高压微流控芯片的水合物相变与气泡演化研究. 力学学报. 2024(06): 1615-1623 . 本站查看
    6. 窦智,刘万明,陈舟,徐朝晖,赵天宇,安亮. 穿越层状多孔介质的非达西渗流特征研究. 水文地质工程地质. 2024(04): 101-107 . 百度学术
    7. LI Yaobin,XU Tianfu,XIN Xin,YU Han,YUAN Yilong,ZHU Huixing. Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics. Journal of Ocean University of China. 2024(03): 618-632 . 必应学术
    8. 李响,刘艺倬,李冰,吴子言,严翔宇,张豪,张国彪. 天然气水合物近井储层渗流规律模拟装置. 石油机械. 2024(07): 10-18 . 百度学术
    9. Han Jianchao,Zhu Shuai,Gui Xia. Formation Characteristics of CO_2 Hydrates in the Presence of Porous Media and NaCl. China Petroleum Processing & Petrochemical Technology. 2024(02): 168-177 . 必应学术
    10. 秦绪文,陆程,张召彬,王平康,李守定,董艳辉,马超,何玉发,庞守吉. 南海天然气水合物试采储层热流耦合与温度场调控研究进展. 地质学报. 2024(11): 3213-3224 . 百度学术
    11. 宋德坤,刘乐乐,王栋. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究. 地学前缘. 2024(06): 405-414 . 百度学术
    12. 毛港涛,李治平,王凯,丁垚. 全可视化双反应釜内甲烷水合物生成与分解特征研究. 特种油气藏. 2023(03): 73-80 . 百度学术
    13. 邢兰昌,王硕,张欢欢,魏伟,韩维峰,杨金秀,葛新民. 基于激电法评价含水合物沉积物渗透率数值模拟研究. 新能源进展. 2023(04): 320-332 . 百度学术
    14. 王文博,崔伟,夏斐,王建强. 垂直井压裂联合降压开采天然气水合物的产能数值模拟. 节能. 2023(09): 30-33 . 百度学术
    15. 李东奇,杨志兵,张乐,胡冉,陈益峰. 空气-悬浮液驱替条件下颗粒边壁滞留研究. 力学学报. 2023(11): 2531-2538 . 本站查看
    16. 李小洋,张欣,田英英,张永勤,梁金强,黄伟. 海洋天然气水合物开采增产新技术可行性研究. 钻采工艺. 2023(05): 87-92 . 百度学术
    17. 崔玉东,陆程,关子越,罗万静,滕柏路,孟凡璞,彭越. 南海海域天然气水合物降压开采储层蠕变对气井产能影响. 油气藏评价与开发. 2023(06): 809-818 . 百度学术
    18. 王自豪,万义钊,刘乐乐,卜庆涛,王壮壮,毛佩筱,胡高伟. 含水合物沉积物相对渗透率研究进展. 海洋地质前沿. 2022(02): 14-29 . 百度学术
    19. 谢崇宏,钟栋梁,李明伟. 多孔介质中不同饱和度天然气水合物的分解特性研究. 海洋地质前沿. 2022(03): 19-26 . 百度学术
    20. 田海涛,刘乐乐,夏宇轩,徐赛,韦伟,蔡建超. 水合物赋存形式对石英砂电性特征影响的数值模拟研究. 地球物理学报. 2022(04): 1439-1450 . 百度学术
    21. Yong-chao Zhang,Le-le Liu,Gao-wei Hu,Qing-tao Bu,Cheng-feng Li,Zheng-cai Zhang,Jian-ye Sun,Chang-ling Liu. Formation mechanism, experimental method, and property characterization of grain-displacing methane hydrates in marine sediment: A review. China Geology. 2022(02): 345-354 . 必应学术
    22. 金毅,王俏俏,董佳斌,刘顺喜,郑军领,李延祥. 颗粒填充型分形孔隙结构复杂组构表征. 岩石力学与工程学报. 2022(06): 1160-1171 . 百度学术
    23. 尹诗琪,王冬冬,张泽,柴华. 海洋细粒砂质水合物储层渗透率预测模型研究. 中国海上油气. 2022(03): 98-104 . 百度学术
    24. 秦绪文,陆程,王平康,梁前勇. 中国南海天然气水合物开采储层水合物相变与渗流机理:综述与展望. 中国地质. 2022(03): 749-769 . 百度学术
    25. 张潘潘,张逸群,王玮,王天宇,穆总结,田守嶒. 径向井降压开采天然气水合物实验研究. 石油科学通报. 2022(03): 382-393 . 百度学术
    26. 刘乐乐,万义钊,李承峰,张永超,刘昌岭,吴能友. 天然气水合物储层有效绝对渗透率现场测试进展. 海洋地质前沿. 2022(11): 40-55 . 百度学术
    27. 惠程玉,张逸群,张潘潘,武晓亚,李根生,黄浩宸. 基于径向井压裂复合降压法的天然气水合物开采产能数值模拟. 天然气工业. 2022(12): 152-164 . 百度学术
    28. 张鹏伟,周洋鑫,郜文哲,刘保国. 海洋软土地层水合物开采多相渗流计算模型. 岩土工程学报. 2022(S1): 80-84 . 百度学术
    29. BU Qingtao,HU Gaowei,LIU Changling,DONG Jie,XING Tongju,SUN Jianye,LI Chengfeng,MENG Qingguo. Effect of Methane Gas on Acoustic Characteristics of Hydrate-Bearing Sediment–Model Analysis and Experimental Verification. Journal of Ocean University of China. 2021(01): 75-86 . 必应学术
    30. 杨智,邹才能,吴松涛,潘松圻,王岚,庞正炼,林森虎,李嘉蕊. 从源控论到源储共生系统——论源岩层系油气地质理论认识及实践. 地质学报. 2021(03): 618-631 . 百度学术
    31. 魏鹳举,胡冉,廖震,陈益峰. 湿润性对孔隙介质两相渗流驱替效率的影响. 力学学报. 2021(04): 1008-1017 . 本站查看
    32. 张永超,刘昌岭,刘乐乐,陈鹏飞,张准,孟庆国. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测. 海洋地质与第四纪地质. 2021(03): 193-202 . 百度学术
    33. 曹冲,程林松,张向阳,贾品,时俊杰. 基于多变量小样本的渗流代理模型及产量预测方法. 力学学报. 2021(08): 2345-2354 . 本站查看
    34. 赵亚鹏,刘乐乐,孔亮,刘昌岭,吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报. 2021(08): 2119-2140 . 本站查看
    35. 张潘潘,田守嶒,张逸群,李根生,武晓亚,王宇豪. 径向井降压开采天然气水合物产能模拟. 石油科学通报. 2021(03): 417-428 . 百度学术
    36. 齐松超,于海洋,杨海烽,汪洋,杨正明. 致密砂岩逆向渗吸作用距离实验研究. 力学学报. 2021(09): 2603-2611 . 本站查看
    37. 魏祥祥,冯其红,张先敏,黄迎松,刘丽杰. 基于VOF方法的水驱油藏孔隙尺度剩余油分布状态研究. 计算物理. 2021(05): 573-584 . 百度学术
    38. 邓佳,吕子健,张奇,宋付权,李久江,赵广杰. 页岩储层纳微米孔隙CO_2/CH_4吸附及驱替特性研究进展. 力学学报. 2021(10): 2880-2890 . 本站查看
    39. 李淑霞,郭尚平,陈月明,张宁涛,武迪迪. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议. 力学学报. 2020(03): 828-842 . 本站查看
    40. 王代刚,魏伟,孙静静,彭晖,李承峰,贾春霞,刘昌岭,卢海龙. 水合物降压分解过程中沉积物孔隙结构动态演化规律. 科学通报. 2020(21): 2292-2302 . 百度学术
    41. 胡高伟,卜庆涛,吕万军,王家生,陈杰,李清,龚建明,孙建业,吴能友. 主动、被动大陆边缘天然气水合物成藏模式对比. 天然气工业. 2020(08): 45-58 . 百度学术
    42. 张永超,刘昌岭,吴能友,刘乐乐,郝锡荦,孟庆国,李承峰,孙建业,王代刚. 含水合物沉积物孔隙结构特征与微观渗流模拟研究. 海洋地质前沿. 2020(09): 23-33 . 百度学术
    43. 李承峰,刘乐乐,孙建业,张永超,胡高伟,刘昌岭. 基于数字岩心的含水合物石英砂微观渗流有限元分析. 海洋地质前沿. 2020(09): 68-72 . 百度学术

    其他类型引用(22)

计量
  • 文章访问数:  3911
  • HTML全文浏览量:  446
  • PDF下载量:  998
  • 被引次数: 65
出版历程
  • 收稿日期:  2019-12-19
  • 刊出日期:  2020-02-09

目录

    /

    返回文章
    返回