EI、Scopus 收录
中文核心期刊

单空泡与自由液面相互作用规律研究进展

郭文璐, 李泓辰, 王静竹, 王一伟, 黄晨光

郭文璐, 李泓辰, 王静竹, 王一伟, 黄晨光. 单空泡与自由液面相互作用规律研究进展[J]. 力学学报, 2019, 51(6): 1682-1698. DOI: 10.6052/0459-1879-19-328
引用本文: 郭文璐, 李泓辰, 王静竹, 王一伟, 黄晨光. 单空泡与自由液面相互作用规律研究进展[J]. 力学学报, 2019, 51(6): 1682-1698. DOI: 10.6052/0459-1879-19-328
Guo Wenlu, Li Hongchen, Wang Jingzhu, Wang Yiwei, Huang Chenguang. RESERCH PROGRESS ON INTERACTION BETWEEN A SINGLE CAVITATION AND FREE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1682-1698. DOI: 10.6052/0459-1879-19-328
Citation: Guo Wenlu, Li Hongchen, Wang Jingzhu, Wang Yiwei, Huang Chenguang. RESERCH PROGRESS ON INTERACTION BETWEEN A SINGLE CAVITATION AND FREE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1682-1698. DOI: 10.6052/0459-1879-19-328
郭文璐, 李泓辰, 王静竹, 王一伟, 黄晨光. 单空泡与自由液面相互作用规律研究进展[J]. 力学学报, 2019, 51(6): 1682-1698. CSTR: 32045.14.0459-1879-19-328
引用本文: 郭文璐, 李泓辰, 王静竹, 王一伟, 黄晨光. 单空泡与自由液面相互作用规律研究进展[J]. 力学学报, 2019, 51(6): 1682-1698. CSTR: 32045.14.0459-1879-19-328
Guo Wenlu, Li Hongchen, Wang Jingzhu, Wang Yiwei, Huang Chenguang. RESERCH PROGRESS ON INTERACTION BETWEEN A SINGLE CAVITATION AND FREE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1682-1698. CSTR: 32045.14.0459-1879-19-328
Citation: Guo Wenlu, Li Hongchen, Wang Jingzhu, Wang Yiwei, Huang Chenguang. RESERCH PROGRESS ON INTERACTION BETWEEN A SINGLE CAVITATION AND FREE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1682-1698. CSTR: 32045.14.0459-1879-19-328

单空泡与自由液面相互作用规律研究进展

基金项目: 1) 国家重点研发计划(2017YFC1404200);国家自然科学基金资助项目(11802311);国家自然科学基金资助项目(11772340);国家自然科学基金资助项目(11672315)
详细信息
    通讯作者:

    王静竹

  • 中图分类号: O35,TV131.32

RESERCH PROGRESS ON INTERACTION BETWEEN A SINGLE CAVITATION AND FREE SURFACE

  • 摘要: 空化与空泡溃灭现象普遍存在于自然界、标识码械和生物医学等领域.空泡与自由面相互作用会产生瞬态强烈耦合,涉及到空泡非球形溃灭、自由面非线性变形及失标识码象,是流体力学领域重要的前沿与基础问题. 本文围绕这一热点,从空泡非球形演化和自由面变形规律角度出发,概标识码纳近年该领域的研究进展与成果. 对于近自由面空泡的非球形演化,基于表征开尔文冲量的无量纲参数,重点关注了体积振荡、射流生成、水锤效应及溃灭标识码生成等关键过程,介绍了关键参数的理论建模方法,获得了空泡溃灭过程中能量分配机制. 针对自由液面变形演化,根据细射流和粗射流生成和发展,归纳了 4 种典型现象及特点:透明水层及水柱生成、不稳定与稳标识码水裙结构. 进一步总结了开尔文冲量理论、界面凹陷奇点概念和泰勒不稳定性等理论模型的建立和应用,讨论了气泡溃灭过程、液面标识码界面稳定性等主要机制. 此外,本文也概述了空泡脉动对球状、圆柱状等非平面液面变形行为的影响,归纳了曲率对于液面变形的影响机制. 最后,针对目前研究状况提出该领域研究中尚未解决的问题,期望对将来的空泡及空泡群与自由液面相互作用深入研究提供借鉴.
    Abstract: The phenomena of cavitation have been observed in various natural and industrial processes like biomedical engineering and marine engineering. The interaction between a single bubble and free surface, involving the non-spherical collapse of cavitation bubble, nonlinear deformation and instability of free surface, etc., is frontier scientific issues in fluid mechanics and bubble dynamics. In this paper, we summarize research progress and achievements of this field in recent years and discuss typical phenomenon from the perspectives of cavitation dynamics and splash behaviors. For the non-spherical evolution of cavitation bubble, we focus on the key processes such as volume oscillation, jet generation, water hammer effect, collapsing shock wave, and centroid migration based on the dimensionless parameter of kelvin impulse. The mechanism of energy distribution during the cavitation collapse is obtained. For the splash dynamics of free surface, four typical phenomena are summarized based on the generation and development of the thin jet and thick jet: formation of transparent water layer, generation of water column, stable and unstable structure of water crown. Furthermore, we review physical mechanisms on the collapse of cavitation, splash and instability of the free surface by using the theories of Kelvin impulse, Singularity at the curved surface, and Rayleigh-Taylor instability. In addition, we present the effect of curved surfaces on the splash dynamics by investigating the behaviors of free surface of spherical and cylindrical shapes. Finally, remaining challenges and development tendency for future research are given.
  • 1 Wang JZ, Abe A, Wang YW , et al. Fundamental study of sterilization effects on marine Vibrio sp. in a cylindrical water chamber with supply of only underwater shock waves. Ultrasonics Sonochemistry, 2018,42:541-550
    2 Huang YX, Wang JZ, Abe A , et al. A theoretical mod- el to estimate inactivation effects of OH radicals on marine vibrio sp. in bubble-shock interaction. Ultrasonics Sonochemistry, 2019,55:359-368
    3 Wang JZ, Abe A, Koita T , et al. Study of sterilization effects on marine Vibrio sp. using interaction of cavitation with shock wave in a narrow water chamber. Journal of Applied Physics, 2018,124(21):213301
    4 Wang YW, Xu C, Wu XC , et al. Ventilated cloud cavitating flow around a blunt body close to the free surface. Physical Review Fluids, 2017,2(8):084303
    5 Xu C, Wang YW, Huang CG , et al. Analysis of near-wall effect on cloud cavitating flow that surrounds an axisymmetric projectile using large eddy simulation with Cartesian cut-cell mesh method. European Journal of Mechanics - B/Fluids, 2018,67:15-24
    6 Yu C, Wang YW, Huang CG , et al. Experimental and numerical investigation on cloud cavitating flow around an axisymmetric projectile near the wall with emphasis on the analysis of local cavity shedding. Ocean Engineering , 2017,140:377-387
    7 鲍文春, 权晓波, 魏海鹏 . 航行体排气水下发射流体动力数值仿真研究. 导弹与航天运载技术, 2014,5:14-18
    7 ( Bao Wenchun, Quan Xiaobo, Wei Haipeng . Numerical simulation on the flow dynamics of underwater vehicle launching with exhaust. Missiles and Space Vehicles, 2014,5:14-18 (in Chinese))
    8 黄彪, 王国玉, 权晓波 等. 轴对称体空化水动力脉动特性的实验研究. 工程力学, 2012,29(2):239-244
    8 ( Huang Biao, Wang Guoyu, Wei Haipeng , et al. Experimental study on fluctuaing hydrodynamics around axisymmetric bodies. Engineering Mechanics, 2012,29(2):239-244 (in Chinese))
    9 孔德才, 权晓波, 魏海鹏 等. 锥柱航行体肩空泡界面效应对头锥面受力的影响研究. 水动力学研究与进展A辑, 2015,30(2):201-207
    9 ( Kong Decai, Quan Xiaobo, Wei Haipeng , et al. Influence of cavitation interface effect of cone-column vehicle on the forces of the cone. Journal of Hydrodynamics, 2015,30(2):201-207 (in Chinese))
    10 王一伟, 黄晨光, 杜特专 等. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012,44(1):39-48
    10 ( Wang Yiwei, Huang Chenguang, Du Tezhuan , et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical luanching process. Chinese Journal of Theoretical & Applied Mechanics, 2012,44(1):39-48 (in Chinese))
    11 张佳悦, 李达钦, 吴钦 等. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报, 2019,51(3):803-812
    11 ( Zhang Jiayue, Li Daqin, Wu Qin , et al. Nu- merical investigation on cavity structures and hydro-dynamics of the vehicle during vertical water-entry. Chinese Journal of Theoretical & Applied Mechanics, 2019,51(3):803-812 (in Chinese))
    12 李帅, 张阿漫, 王诗平 . 气泡引起的皇冠型水冢实验与数值研究. 物理学报, 2013,62(19):300-310
    12 ( Li Shuai, Zhang Aman, Wang Shiping . Experimental and numerical studies on “crown” spike generated by a bubble near free-surface. Acta Physica Sinica, 2013,62(19):300-310 (in Chinese))
    13 刘涛, 王江安, 宗思光 等. 激光空泡在近自由液面运动特性的实验研究. 光学学报, 2012,32(7):154-160
    13 ( Liu Tao, Wang Jiang’an, Zong Siguang , et al. Experimental study of laser-generated cavitation bubble motion near a free liquid surface. Acta Optica Sinica, 2012,32(7):154-160 (in Chinese))
    14 张阿漫, 姚熊亮 . 近自由面的多个水下爆炸气泡相互作用研究. 力学学报, 2007,40(1):26-34
    14 ( Zhang Aman, Yao Xiongliang . The iteraction between mutiple underwater explosion bubbles near free surface. Chinese Journal of Theoretical & Applied Mechanics, 2007,40(1):26-34 (in Chinese))
    15 Song WD, Hong MH, Lukyanchuk B , et al. Laser-induced cavitation bubbles for cleaning of solid surfaces. Journal of Applied Physics, 2004,95(6):2952-2957
    16 Philipp A, Lauterborn W . Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 1998,361:75-116
    17 Zhang AM, Li S, Cui J . Study on splitting of a toroidal bubble near a rigid boundary. Physics of Fluids, 2015,27(6):809-822
    18 王成会, 林书玉 . 超声波作用下气泡的非线性振动. 力学学报, 2010,42(6):1050-1059
    18 ( Wang Chenghui, Lin Shuyu . The nonlinear oscillation of bubbles in the ultrasonic field. Chinese Journal of Theoretical & Applied Mechanics, 2010,42(6):1050-1059 (in Chinese))
    19 Escoffre JM, Bouakaz A . Therapeutic ultrasound. Advances in Experimental Medicine & Biology, 2016,880(1):3-9
    20 Illing RO, Kennedy JE, Wu F , et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a western population. British Journal of Cancer, 2005,93(8):890-895
    21 Haar D, Coussios C . High intensity focused ultrasound: Physical principles and devices. International Journal of Hypertermia, 2007,23(2):89-104
    22 Coussios CC, Roy RA . Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annual Review of Fluid Mechanics, 2008,40(1):395-420
    23 Brujan EA, Nahen K, Schmidt P , et al. Dynamics of laser-induced cavitation bubbles near elastic boundaries: Influence of the elastic modulus. Journal of Fluid Mechanics, 2001,433:251-281
    24 Takayama K . Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy. Japanese Journal of Applied Physics Pt Regular Papers & Short Notes, 1993,32(5B):2192-2198
    25 Kodama T, Takayama K . Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. Ultrasound in Medicine & Biology, 1998,24(5):723-738
    26 Kedrinskii VK . Problems of Cavitative Destruction//Hydrodynamics of Explosion. Berlin: Springer, 2005: 223-296
    27 Ohl SW, Klaseboer E, Khoo BC . Bubbles with shock waves and ultrasound: A review. Interface Focus, 2015,5(5):20150019
    28 Tagawa Y, Oudalov N, Visser CW , et al. Highly focused supersonicmicrojets. Physical Review X, 2012,2(3):031002
    29 Peters IR, Tagawa Y, Oudalov N , et al. Highly focused supersonic microjets: Numerical simulations. Journal of Fluid Mechanics, 2013,719:587-605
    30 Kiyama A, Tagawa Y, Ando K , et al. Effects of a water hammer and cavitation on jet formation in a test tube. Journal of Fluid Mechanics, 2016,787:224-236
    31 Tagawa Y, Yamamoto S, Hayasaka K , et al. On pressure impulse of a laser-induced underwater shock wave. Journal of Fluid Mechanics, 2016,808:5-18
    32 Lee T, Baac HW, Ok JG , et al. Nozzle-free liquid microjetting via homogeneous bubble nucleation. Physical Review Applied, 2015,3(4):044007
    33 Veron F . Ocean spray. Annual Review of Fluid Mechanics, 2015,47(1):507-538
    34 Kudryavtsev VN, Makin VK . Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-Layer Meteorology, 2011,140(3):383-410
    35 Andreas LE . The temperature of evaporating sea spray droplets. Journal of the Atmospheric Sciences, 1995,52(7):852-862
    36 Rayleigh L . VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2009,34:94-98
    37 Brennen C. Cavitation and Bubble Dynamics. Cambridge: Cambridge University Press, 2013: 1-29
    38 Kornfeld M, Suvorov L . On the destructive action of cavitation. Journal of Applied Physics, 1944,15(6):495-506
    39 Supponen O, Kobel P, Obreschkow D , et al. The inner world of a collapsing bubble. Physics of Fluids, 2015,27(9):091113
    40 Zhang AM, Cui P, Wang Y . Experiments on bubble dynamics between a free surface and a rigid wall. Experiments in Fluids, 2013,54(10):1602-1619
    41 Zhang AM, Cui P, Cui J , et al. Experimental study on bubble dynamics subject to buoyancy. Journal of Fluid Mechanics, 2015,776:137-160
    42 Obreschkow D, Kobel P, Dorsaz N , et al. Cavitation bubble dynamics inside liquid drops in microgravity. Physics Review Letters, 2006,97(9):094502
    43 Robert E, Lettry J, Farhat M , et al. Cavitation bubble behavior inside a liquid jet. Physics of Fluids, 2007,19(6):067106
    44 Supponen O, Obreschkow D, Tinguely M , et al. Scaling laws for jets of single cavitation bubbles. Journal of Fluid Mechanics, 2016,802:263-293
    45 Ceccio SL, M$\ddot{a}$kiharju SA . Experimental methods for the study of hydrodynamic cavitation//Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines, Berlin: Springer, 2017: 35-64
    46 Blake JR, Taib BB, Doherty G . Transient cavities near boundaries part 2: Free surface. Journal of Fluid Mechanics, 1987,181:197-212
    47 Blake JR . The Kelvin impulse: application to cavitation bubble dynamics. The Journal of the Australian Mathematical Society Series B Applied Mathematics, 1988,30(2):127-146
    48 Best JP, Blake JR . An estimate of the Kelvin impulse of a transient cavity. Journal of Fluid Mechanics, 1994,261:75-93
    49 Blake JR, Leppinen DM, Wang QX . Cavitation and bu- bble dynamics: the Kelvin impulse and its applications. Interface Focus, 2015,5(5):20150017
    50 Longuet-Higgins MS . Bubbles, breaking waves and hyperbolic jets at a free surface. Journal of Fluid Mechanics, 1983,30(9):696-700
    51 Gong SW, Ohl SW, Klaseboer E , et al. Scaling law for bubbles induced by different external sources: Theoretical and experimental study. Physical Review E, 2010,81(5):056317
    52 Wang QX, Yeo KS, Khoo BC , et al. Nonlinear interaction between gas bubble and free surface. Computers & Fluids, 1996,25(7):607-628
    53 Wang QX, Yeo KS, Khoo BC , et al. Strong interaction between a buoyancy bubble and a free surface. Theoretical and Computational Fluid Dynamics, 1996,8(1):73-88
    54 Wang C, Khoo BC . An indirect boundary element method for three-dimensional explosion bubbles. Journal of Computational Physics, 2004,194(2):451-480
    55 Rogers JCW, Szymczak WG . Computations of violent surface motions: Comparisons with theory and experiment. Philosophical Transactions:Mathematical, Physical and Engineering Sciences, 1997,355:649-663
    56 Zeng Q, Gonzalez-Avila SR, Voorde ST , et al. Jetting of viscous droplets from cavitation-induced Rayleigh-Taylor instability. Journal of Fluid Mechanics, 2018,846:916-943
    57 Koukouvinis P, Gavaises M, Supponen O , et al. Simulation of bubble expansion and collapse in the vicinity of a free surface. Physics of Fluids, 2016,28(5):052103
    58 Pearson A, Cox E, Blake JR , et al. Bubble interactions near a free surface. Engineering Analysis with Boundary Elements, 2004,28(4):295-313
    59 王诗平, 孙士丽, 张阿漫 等. 可压缩流场中气泡脉动数值模拟. 力学学报, 2012,44(3):513-519
    59 ( Wang Shiping, Sun Shili, Zhang Aman , et al. Numerical simulation of bubble dynamic in compressible fluid. Chinese Journal of Theoretical & Applied Mechanics, 2012,44(3):513-519 (in Chinese))
    60 Liu NN, Wu WB, Zhang AM , et al. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate. Physics of Fluids, 2017,29(10):107102
    61 Liu YL, Wang QX, Wang SP , et al. The motion of a 3D toroidal bubble and its interaction with a free surface near an inclined boundary. Physics of Fluids, 2016,28(12):122101
    62 Zhang AM, Liu YL . Improved three-dimensional bubble dynamics model based on boundary element method. Journal of Computational Physics, 2015,294:208-223
    63 Zhang S, Wang SP, Zhang AM . Experimental study on the interaction between bubble and free surface using a high-voltage spark generator. Physics of Fluids, 2016,28(3):032109
    64 Benjamin TB, Ellis AT . The collapse of cavitation bu- bbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966,260:221-240
    65 Lun CKK, Savage SB, Jeffrey DJ , et al. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 1984,140:223-256
    66 Thoroddsen ST, Shen AQ . Granular jets. Physics of Fluids, 2001,13(1):4-6
    67 Hogrefe JE, Peffley NL, Goodridge CL , et al. Power-law singularities in gravity-capillary waves. Physica D, 1998,123:183-205
    68 Shin J, McMahon TA . The tuning of a splash. Physics of Fluids A-Fluid Dynamics, 1990,2(8):1312-1317
    69 Rein M . The transitional regime between coalescing and splashing drops. Journal of Fluid Mechanics, 1996,306:145-165
    70 Deike L, Ghabache E, Liger-Belair G , et al. Dynamics of jets produced by bursting bubbles. Physical Review Fluids, 2018,3(1):013603
    71 Lai CY, Eggers J, Deike L . Bubble bursting: Universal cavity and jet profiles. Physical Review Letters, 2018,121(14):144501
    72 Ghabache E, Antkowiak A, Josserand C , et al. On the physics of fizziness: How bubble bursting controls droplets ejection. Physics of Fluids, 2014,26(14):121701
    73 Ga$\widetilde{n}\acute{a}$n-Calvo AM . Revision of bubble bursting: Universal scaling laws of top jet drop size and speed. Physical Review Letters, 2017,119(20):204502
    74 Ga$\widetilde{n}\acute{a}$n-Calvo AM . Erratum: Scaling laws of top jet drop size and speed from bubble bursting including gravity and inviscid limit. Physical Review Fluids, 2018,3(12):129901
    75 Duchemin L, Popinet S, Josserand C , et al. Jet formation in bubbles bursting at a free surface. Physics of Fluids, 2002,14(9):3000-3008
    76 Yarin AL . Drop impact dynamics: Splashing, spreading, receding, bouncing. Annual Review of Fluid Mechanics, 2005,38(1):159-192
    77 Zeff BW, Kleber B, Fineberg J , et al. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature, 2000,403:401-404
    78 Brenner MP . Jets from a singular surface. Nature, 2000,403:377-378
    79 Aspden AJ, Bell JB, Day MS , et al. Turbulence-flame interactions in type Ia supernovae. Astrophysical Journal, 2008,689(2):1173-1185
    80 Plewa T . Detonating failed deflagration model of thermonuclear supernovae I. Explosion dynamics. Astrophysical Journal, 2006,662(1):459-471
    81 Gamezo VN, Khokhlov AM, Oran ES . Deflagrations and detonations in thermonuclear Supernovae. Physical Review Letters, 2004,92(21):211102
    82 Kuhl AL, Bell JB, Beckner VE , et al. Spherical combustion clouds in explosions. Shock Waves, 2013,23(3):233-249
    83 Casner A, Caillaud T, Darbon S , et al. LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics. High Energy Density Physics, 2015,17(A):2-11
    84 Depierreux S, Labaune C, Michel DT , et al. Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime. Physical Review Letters, 2009,102(19):195005
    85 Zhou Y . Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Physics Reports, 2017, 720-722:1-136
    86 Velikovich AL, Schmit PF . Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells. Physics of Plasmas, 2015,22(12):122711
    87 Mikaelian KO . Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells. Physical Review A, 1990,42(6):3400-3420
    88 Plesset SM . On the Stability of fluid flows with spherical symmetry. Journal of Applied Physics, 1954,25(1):96-99
    89 Mikaelian KO . Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells. Physics of Fluids, 2005,17(9):094105
    90 Supponen O, Obreschkow D, Kobel P , et al. Shock waves from nonspherical cavitation bubbles. Physical Review Fluids, 2017,2(9):093601
    91 Obreschkow D, Tinguely M, Dorsaz N , et al. Universal scaling law for jets of collapsing bubbles. Physical Review Letters, 2011,107(20):204501
    92 Zhang S, Duncan JH . On the nonspherical collapse and rebound of a cavitation bubble. Physics of Fluids, 1994,6(7):2352-2362
    93 Zhang LX, Chen LY, Shao XM . The migration and growth of nuclei in an ideal vortex flow. Physics of Fluids, 2016,28(12):123305
    94 张凌新, 尹琴, 邵雪明 . 水中气泡溃灭的理论与数值研究. 水动力学研究与进展A辑, 2012,27(1):68-73
    94 ( Zhang Lingxin, Yin Qin, Shao Xueming . Theoretical and numerical studies on the bubble collapse in water. Journal of Hydrodynamics, 2012,27(1):68-73 (in Chinese))
    95 张阿漫, 王超, 王诗平 等. 气泡与自由液面相互作用的实验研究. 物理学报, 2012,61(8):300-312
    95 ( Zhang Aman, Wang Chao, Wang Shiping , et al. Experimental study of interaction between bubble and free surface. Acta Physica Sinica, 2012,61(8):300-312 (in Chinese))
    96 Obreschkow D, Tinguely M, Dorsaz N , et al. The quest for the most spherical bubble: Experimental setup and data overview. Experiments in Fluids, 2013,54(4):1503-1520
    97 Lindau O, Lauterborn W . Cinematographic observati- on of the collapse and rebound of a laser-produced cavitation bubble near a wall. Journal of Fluid Mechanics, 2003,479:327-348
    98 Ohl CD, Kurz T, Geisler R , et al. Bubble dynamics, shock waves and sonoluminescence. Philosophical Transactions of The Royal Society A, 1999,357:269-294
    99 Shigeru N, Wang JZ, Abe A , et al. Sequential observation of rebound shock wave generated by collapse of vapor bubble in BOS system. Journal of Visualization, 2018,21(12):1-16
    100 Johnsen E, Colonius T . Numerical simulations of non-spherical bubble collapse. Journal of Fluid Mechanics, 2009,629:231-262
    101 Tinguely M, Obreschkow D, Kobel P , et al. Energy partition at the collapse of spherical cavitation bubbles. Physical Review E, 2012,86(4):046315
    102 Gibson DC . Cavitation adjacent to plane boundaries//Proceeding of 3rd Conference Hydraulic Fluid Mechanics, Sydney, 1968: 210-214
    103 Kang YJ, Cho Y . Gravity-capillary jet-like surface waves generated by an underwater bubble. Journal of Fluid Mechanics, 2019,866:841-864
    104 Chen RCC, Yu YT, Su KW , et al. Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface. Optics Express, 2013,21(1):445-453
    105 Chen RCC, Yu YT, Su KW , et al. Exploring morphological variations of a laser-induced water jet in temporal evolution: Formation of an air bubble enclosing a water drop. Laser Physics, 2013,23(11):116002
    106 Apitz I, Vogel A . Material ejection in nanosecond Er: YAG laser ablation of water, liver, and skin. Applied Physics A, 2005,81(2):329-338
    107 Thoroddsen ST, Takehara K, Etoh TG , et al. Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Physics of Fluids, 2009,21(11):112101
    108 Marston JO, Mansoor MM, Thoroddsen ST , et al. The effect of ambient pressure on ejecta sheets from free-surface ablation. Experiments in Fluids, 2016,57(5):61-70
    109 Tomita Y, Kodama T, Shima A . Secondary cavitation due to interaction of a collapsing bubble with a rising free surface. Applied Physics Letters, 1991,59(3):274-277
    110 Chen J, Bo L, Zou J . Secondary cavitation in a rigid tube. Physics of Fluids, 2017,29(8):082107
    111 Zhang S, Zhang AM, Wang SP , et al. Dynamic charac-teristics of large scale spark bubbles close to different boundaries. Physics of Fluids, 2017,29(9):092107
    112 Blake JR, Gibson DC . Growth and collapse of a vapour cavity near a free surface. Journal of Fluid Mechanics, 1987,111:123-140
    113 Liu NN, Wu WB, Zhang AM , et al. Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate. Physics of Fluids, 2017,29(10):107102
    114 Liu NN, Cui P, Ren SF , et al. Study on the interactions between two identical oscillation bubbles and a free surface in a tank. Physics of Fluids, 2017,29(5):052104
    115 Li HC, Wang JZ, Wang YW . Cavitation-induced interface instablity of droplet between plates//ASME-JSME-KSME 2019 Joint Fluids Engineering Conference, 2019
    116 Duocastella M, Patrascioiu A, Fern$\acute{a}$ndez-Pradas JM , et al. Film-free laser forward printing of transparent and weakly absorbing liquids. Optics Express, 2010,18(21):21815-21825
    117 Li ZR, Sun L, Zong Z , et al. A boundary element method for the simulation of non-spherical bubbles and their interactions near a free surface. Acta Mechanica Sinica, 2012,28(1):51-65
    118 Robert E . Dynamics of a cavitation bubble inside a liquid jet. [Master Thesis]. Switzerland: E’ cole Polytechnique Fe’de’rale de Lausanne, 2004
    119 Avila SRG, Ohl CD . Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. Journal of Fluid Mechanics, 2016,805:551-576
    120 Avila SRG, Ohl CD . Cavitation-induced fragmentation of an acoustically-levitated droplet. Journal of Physics: Conference Series, 2015,656:012017
    121 Avila SRG, Song C, Ohl CD . Fast transient microjets induced by hemispherical cavitation bubbles. Journal of Fluid Mechanics, 2015,767:31-51
    122 Marston JO, Thoroddsen ST . Laser-induced micro-jetting from armored droplets. Experiments in Fluids, 2015,56(7):140-149
    123 Heijnen L, Quinto-Su PA, Zhao X , et al. Cavitation within a droplet. Physics of Fluids, 2009,21(9):091102
    124 Padilla-Martinez JP, Ramirez-San-Juan JC, Berrospe-Rodriguez C , et al. Controllable direction of liquid jets generated by thermocavitation within a droplet. Applied Optcis, 2017,56(25):7167-7173
  • 期刊类型引用(11)

    1. 薛文浩,吴晓君,张飞飞,何凯. 空化水射流在渐进成形与冲蚀领域的对比分析. 精密成形工程. 2024(02): 28-37 . 百度学术
    2. 赵扬,钟俞盈,高晓燕,凃程旭,包福兵. 激光空泡与油膜-水界面相互作用的实验研究. 中国激光. 2023(13): 22-33 . 百度学术
    3. 李兆豪,张宇宁. 液滴内部空化泡动力学研究进展. 水动力学研究与进展A辑. 2023(06): 872-880 . 百度学术
    4. 丘润荻,支玉昌,张珍,黄仁芳,王一伟,杜特专. 绕弹性水翼空化流动及其流激振动特性研究. 水动力学研究与进展A辑. 2022(02): 172-180 . 百度学术
    5. 王宁,周领,李赟杰,潘天文. 黏弹性管道水柱分离弥合水锤有限体积法模型. 力学学报. 2022(07): 1952-1959 . 本站查看
    6. 雷晨庆,袁烁,林乃明,吴玉程,伏利,马冠水. 钛合金空蚀损伤及防护的研究进展. 表面技术. 2022(10): 128-142 . 百度学术
    7. 孙龙泉,颜皓,马贵辉,赵纪鹏. 环形槽对通气空泡融合的促进作用分析. 力学学报. 2021(02): 386-394 . 本站查看
    8. 岳杰顺,权晓波,叶舒然,王静竹,王一伟. 水下发射水动力的多尺度预测网络研究. 力学学报. 2021(02): 339-351 . 本站查看
    9. 黄焱,孙策,田育丰. 气垫平台破冰阻力的模型试验研究. 力学学报. 2021(03): 714-727 . 本站查看
    10. 胡振宇,曹卓尔,李帅,张阿漫. 水中高压脉动气泡与浮体流固耦合特性研究. 力学学报. 2021(04): 944-961 . 本站查看
    11. 韩磊,张敏弟,黄国豪,黄彪. 自由场空泡溃灭过程能量转化机制研究. 力学学报. 2021(05): 1288-1301 . 本站查看

    其他类型引用(10)

计量
  • 文章访问数:  2408
  • HTML全文浏览量:  501
  • PDF下载量:  448
  • 被引次数: 21
出版历程
  • 收稿日期:  2019-10-21
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回