EI、Scopus 收录
中文核心期刊

垂直壁面附近上升单气泡的弹跳动力学研究

孙姣, 周维, 蔡润泽, 陈文义

孙姣, 周维, 蔡润泽, 陈文义. 垂直壁面附近上升单气泡的弹跳动力学研究[J]. 力学学报, 2020, 52(1): 1-11. DOI: 10.6052/0459-1879-19-228
引用本文: 孙姣, 周维, 蔡润泽, 陈文义. 垂直壁面附近上升单气泡的弹跳动力学研究[J]. 力学学报, 2020, 52(1): 1-11. DOI: 10.6052/0459-1879-19-228
Sun Jiao, Zhou Wei, Cai Runze, Chen Wenyi. THE BOUNCE DYNAMICS OF A RISING SINGLE BUBBLE NEAR A VERTICAL WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11. DOI: 10.6052/0459-1879-19-228
Citation: Sun Jiao, Zhou Wei, Cai Runze, Chen Wenyi. THE BOUNCE DYNAMICS OF A RISING SINGLE BUBBLE NEAR A VERTICAL WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11. DOI: 10.6052/0459-1879-19-228
孙姣, 周维, 蔡润泽, 陈文义. 垂直壁面附近上升单气泡的弹跳动力学研究[J]. 力学学报, 2020, 52(1): 1-11. CSTR: 32045.14.0459-1879-19-228
引用本文: 孙姣, 周维, 蔡润泽, 陈文义. 垂直壁面附近上升单气泡的弹跳动力学研究[J]. 力学学报, 2020, 52(1): 1-11. CSTR: 32045.14.0459-1879-19-228
Sun Jiao, Zhou Wei, Cai Runze, Chen Wenyi. THE BOUNCE DYNAMICS OF A RISING SINGLE BUBBLE NEAR A VERTICAL WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11. CSTR: 32045.14.0459-1879-19-228
Citation: Sun Jiao, Zhou Wei, Cai Runze, Chen Wenyi. THE BOUNCE DYNAMICS OF A RISING SINGLE BUBBLE NEAR A VERTICAL WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11. CSTR: 32045.14.0459-1879-19-228

垂直壁面附近上升单气泡的弹跳动力学研究

基金项目: 1) 国家自然科学基金资助项目(11602077);国家自然科学基金资助项目(11572357)
详细信息
    通讯作者:

    陈文义

  • 中图分类号: O359$^+$.1

THE BOUNCE DYNAMICS OF A RISING SINGLE BUBBLE NEAR A VERTICAL WALL

  • 摘要: 采用高速摄影技术结合阴影法,对静止水中垂直壁面附近上升单气泡运动进行实验研究,对比气泡尺度及气泡喷嘴与壁面之间的初始无量纲距离 ($S^{\ast}$)对气泡上升运动特性的影响,分析气泡与壁面碰撞前后,壁面效应与气泡动力学机制及能量变化规律.结果表明,对于雷诺数$Re \approx 580 \sim 1100$,无量纲距离$S^{\ast } <2 \sim3$时,气泡与壁面碰撞且气泡轨迹由无约束条件下的三维螺旋转变成二维之字形周期运动;当$S^{\ast } >2 \sim3$时,壁面效应减弱,有壁面约束的气泡运动与无约束气泡运动特性趋于一致.气泡与壁面碰撞前后,壁面效应导致横向速度峰值下降为原峰值的70%,垂直速度下降50%;气泡与壁面碰撞前,通过气泡中心与壁面距离($x/R$)和修正的斯托克斯数相关式可预测垂直速度的变化规律.上升气泡与壁面碰撞过程中,气泡表面变形能量单向传输给气泡横向动能,使得可变形气泡能够保持相对恒定的弹跳运动.提出了气泡在与壁面反复弹跳时的平均阻力系数的预测模型,能够很好地描述实验数据反映出的对雷诺数${Re}$、韦伯数${We}$和奥特沃斯数${Eo}$等各无量纲参数的标度规律.
    Abstract: By using high speed photography technology combined with shadow method, the motion of a single rising bubble near a vertical wall in stationary water is experimentally studied. The effects of bubble size and the initial dimensionless distance between the nozzle and the wall ($S^{\ast})$ on the rising motion characteristics of bubbles were compared. The wall effect, bubble dynamic mechanism and energy variation rule before and after the collision between bubbles and the walls are analyzed. The results show that for the Reynolds number $Re \approx 580\sim 1100$, and the initial dimensionless distance between the nozzle and the wall $S^{\ast } < 2\sim 3$, the bubbles collide with the wall surface and the bubble trajectory changes from three-dimensional spiral under unconstrained conditions to two-dimensional zigzag periodic motion. However, when $S^{\ast } > 2\sim 3$, the wall effect weakens, and the movement characteristics of the bubble with wall constraint tends to be consistent with that without constraint. Before and after the bubble collides with the wall, the wall effect causes the peak value of transverse velocity to drop to 70% of the original peak value, and vertical velocity drop to 50%. Before the bubble collides with the wall, the vertical velocity variation rule can be predicted by the distance between the bubble center and the wall ($x/R)$ and the modified Stokes number correlation formula. In the process of collision between the rising bubble and the wall surface, the deformation energy of the bubble surface is transmitted to the transverse kinetic energy of the bubble in one direction, so that the deforming bubbles can maintain a relatively constant bouncing motion. The prediction model of the average resistance coefficient of bubbles in the repeated bouncing with the wall surface is proposed, which can describe the dimensionless parameters of Reynolds number, Weber number and Eo number reflected by the experimental data.
  • [1] Zawala J, Kosior D . Dynamics of dewetting and bubble attachment to rough hydrophobic surfaces-measurements and modelling. Minerals Engineering, 2016,85:112-122
    [2] Clift R, Grace JR, Weber ME . Bubbles, Drops, Particles. New York: Academic Press, 1978
    [3] David M, Aurélie L, Arnaud C , et al. Dynamics and morphology of single ellipsoidal bubbles in liquids. Experimental Thermal & Fluid Science, 2015,64:1-12
    [4] de Vries AWG, Biesheuvel A, Wijngaarden LV . Notes on the path and wake of a gas bubble rising in pure water. International Journal of Multiphase Flow, 2002,28(11):1823-1835
    [5] Jeong H, Park H . Near-wall rising behaviour of a deformable bubble at high Reynolds number. Journal of Fluid Mechanics, 2015,771:564-594
    [6] Zaruba A, Lucasa D, Prasserb HM , et al. Bubble-wall interactions in a vertical gas--liquid flow: Bouncing, sliding and bubble deformations. Chemical Engineering Science, 2007,62:1591-1605
    [7] Hosokawa S, Tomiyama A, Misaki S , et al. Lateral migration of singe bubbles due to the presence of wall// ASME 2002 Fluids Engineering Division Summer, Meeting Montreal, Quebec, Canada, July 14-18, 2002
    [8] Takemura F, Takagi S, Magnaudet J , et al. Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid. Journal of Fluid Mechanics, 2002,461(461):277-300
    [9] Takemura F, Magnaudet J . The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number. Journal of Fluid Mechanics, 2003,495(495):235-253
    [10] Vasseur P, Cox RG . The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. Journal of Fluid Mechanics, 1977,80:561-591
    [11] Magnaudet J, Mougin G . Wake instability of a fixed spheroidal bubble. Journal of Fluid Mechanics, 2007,572:311-337
    [12] Sugiyama K, Takemura F , et al. On the lateral migration of a slightly deformed bubble rising near a vertical plane wall. Journal of Fluid Mechanics, 2010,662(7):209-231
    [13] Sugioka K, Tsukada T . Direct numerical simulations of drag and lift forces acting on a spherical bubble near a plane. International Journal of Multiphase Flow, 2015,71:32-37
    [14] Zeng L, Balachandar S, Fischer P . Wall-induced forces on a rigid sphere at finite Reynolds number. Journal of Fluid Mechanics, 2005,536(536):1-25
    [15] Zeng L, Najjar F, Balachandar S , et al. Forces on a finite-sized particle located close to a wall in a linear shear flow. Physics of Fluids, 2009,21(033302):1-19
    [16] 陈斌 . 高黏度流体中上升气泡的直接数值模拟. 工程热物理学报, 2006,27(2):255-258
    [16] ( Chen Bin . Direct numerical simulation of bubbles rising in high viscosity fluids. Journal of Engineering Thermophysics, 2006,27(2):82-84 (in Chinese))
    [17] 陈斌, Kawamura T, Kodama Y . 静止水中单个上升气泡的直接数值模拟. 工程热物理学报, 2005,26(6):82-84 (in Chinese))
    [17] ( Chen Bin, Kawamura T, Kodama Y . Direct numerical simulation of a single bubble rising in still water. Journal of Engineering Thermophysics, 2005,26(6):82-84 (in Chinese))
    [18] 张洋, 陈科, 尤云祥 等. 壁面约束对裙带气泡动力学的影响. 力学学报, 2017,49(05):1050-1058
    [18] ( Zhang Yang, Chen Ke, You Yunxiang , et al. Confinement effect on the rising dynamics of a skirted bubble. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(05):1050-1058 (in Chinese))
    [19] 张洋, 陈科, 尤云祥 等. 浮力气泡对水平壁面的回弹动力学特性研究. 力学学报, 2019,51(5):1285-1295
    [19] ( Zhang Yang, Chen Ke, You Yunxiang , et al. Bouncing behaviors of a buoyancy-driven bubble on a horizontal solid wall. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1285-1295 (in Chinese))
    [20] 邱超, 张会臣 . 单个上升空泡撞击顶部壁面的变形和回弹特性研究. 机械工程学报, 2014,50(14):191-196 (in Chinese))
    [20] ( Qiu Chao, Zhang Huichen . Deformation and rebound characteristics of single rising bubble impacting against top wall. Chin J Mech Eng-EN, 2014,50(14):191-196 (in Chinese))
    [21] 李帅, 张阿漫 . 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014,63(5):054705
    [21] ( Li Shui, Zhang Aman . Study on a rising bubble bouncing near a rigid boundary. Acta Physica Sinica, 2014,63(5):054705 (in Chinese))
    [22] 鞠花, 陈刚, 李国栋 等. 静水中上升气泡沿倾斜壁面的运动特性试验研究. 水动力学研究与进展A辑, 2011,26(3):327-332
    [22] ( Ju Hua, Chen Gang, Li Guodong , et al. Experimental study on motion behavior of single bubble rising along inclined plane in still water. Chinese Journal of Hydrodynamics, 2011,26(3):327-332 (in Chinese))
    [23] Celata GP, Cumo MD, Annibale F , et al. Effect of gas injection mode and purity of liquid on bubble rising in two-component systems. Experimental Thermal & Fluid Science, 2006,31(1):37-53
    [24] Celata GP, D'Annibale F, Marco PD , et al. Measurements of rising velocity of a small bubble in a stagnant fluid in one- and twocomponent systems. Experimental Thermal & Fluid Science, 2007,31:609-623
    [25] 张嫚嫚, 孙姣, 陈文义 . 一种基于几何重构的Youngs-VOF耦合水平集追踪方法. 力学学报, 2019,51(3):775-786
    [25] ( Zhang Manman, Sun Jiao, Chen Wenyi . An interface tracking method of coupled Youngs-VOF and level set based on geometricreconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):775-786 (in Chinese))
    [26] Zenit R, Magnaudet J . Measurements of the streamwise vorticity in the wake of an oscillating bubble. International Journal of Multiphase Flow, 2009,35(2):195-203
    [27] Tsutsui T . Flow around a sphere in a plane turbulent boundary layer. Journal of Wind Engineering & Industrial Aerodynamics, 2008,96:779-792
    [28] Zhang J, Ni MJ . What happens to the vortex structures when the rising bubble transits from zigzag to spiral? Journal of Fluid Mechanics, 2017,828:353-373
    [29] Lee J, Hyungmin Park . Wake structures behind an oscillating bubble rising close to a vertical wall. International Journal of Multiphase Flow, 2017,91:225-242
    [30] Mougin G, Magnaudet J . Path instability of a rising bubble. Physical Review Letters, 2002,88(1):014502
    [31] Wang X, Sun J, Zhao J , et al. Experimental detection of bubble-wall interactions in a vertical gas--liquid flow. Chinese Journal of Chemical Engineering, 2017,25(7):838-847
    [32] Krishna R, Ursenu MI, Van Baten JM , et al. Wall effects on the rise of single gas bubbles in liquids. International Communications in Heat and Mass Transfer, 1999,26(6):781-790
    [33] Simcik M, Ruzicka MC, Draho? J . Computing the added mass of dispersed particles. Chemical Engineering Science, 2008,63:4580-4595
    [34] Zawalaa J . "Immortal" liquid film formed by colliding bubble at oscillating solid substrates. Physics of Fluids, 2016,28:05710
    [35] Tomiyama A, Kataoka I, Zunm I , et al. Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal Series B Fluids and Thermal Engineering, 1998,41:472-479
    [36] Kok JBW . Dynamics of a pair of gas bubbles moving through liquid. I: Theory. European Journal of Mechanics - B/Fluids, 1993,12(4):515-540
    [37] Schiller L, Naumann Z . A drag coefficient correlation. Zeitschrift des Vereines Deutscher Ingenieure, 1935,77:318-323
    [38] Ishii M, Chawla TC . Local drag laws in dispersed two-phase flow. Nasa Sti/recon Technical Report N, 1979,80
    [39] Moore DW . The rise of a gas bubble in a viscous liquid. Journal of Fluid Mechanics, 1995,6(1):113-130
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 刊出日期:  2020-02-09

目录

    /

    返回文章
    返回