EI、Scopus 收录
中文核心期刊

风速不确定性对风力机气动力影响量化研究

QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE

  • 摘要: 风力机气动力学一直是国内外研究的热点课题之一.目前相关研究大都是基于确定性工况条件, 但因风力机常年工作在自然来流复杂环境,风速随机波动致使风电系统呈现不确定性, 对电网稳定性带来巨大挑战,因此进行不确定风速条件下风力机气动力学研究具有重要意义.为揭示不确定性对风力机流场影响机理并明确其对气动力的影响程度,本文提出一种风力机不确定空气动力学分析方法,基于修正叶素动量理论和非嵌入式概率配置点法,建立水平轴风力机不确定性空气动力学响应模型; 以NREL Phase VI S809风力机叶轮为研究对象, 基于该模型提取风力机输出随机响应信息,量化不确定风速对风力机风轮功率、推力、叶片挥舞弯矩和摆振弯矩的影响程度;通过分析流动诱导因子不确定性在叶片展长方向上的分布规律,揭示不确定因素在风力机本体上的传播机制,为风电系统设计及应用提供理论依据和重要参考. 结果表明,风速波动对风力机功率和气动力影响显著,高斯风速标准差由0.05倍增大至0.15倍均值,功率和推力最大波动幅度分别由13.44%和8.00%增大至35.11%和22.02%,叶片挥舞弯矩和摆振弯矩最大波动幅度分别由7.20%和12.84%增大至19.90%和33.49%.来流风速不确定性导致叶片根部位置气流明显波动,可以考虑在该部分采取流动控制措施降低叶片对风速不确定性的敏感程度.

     

    Abstract: Wind turbine aerodynamics has been one of the hottest research topics at home and abroad. At present, most relevant researches are based on deterministic working conditions. However, since wind turbine works in the complex environment of natural flow in the atmosphere all the year round, wind speed fluctuates and changes randomly, the power output of wind turbine is uncertain. The uncertainty of wind power system brings great challenges to the stability of national grid. It is important to study the aerodynamics of wind turbine under uncertain wind speed conditions. In order to reveal the influence mechanism of uncertainty on wind turbine flow field and to determine its influence on loads, this paper proposes an uncertain aerodynamic analysis method for wind turbine. Based on the blade element momentum theory and the non-intrusive probabilistic collocation, the uncertainty aerodynamic response model of horizontal axis wind turbine was established. Taking the NREL Phase VI S809 wind turbine rotor as the research object, the random output response information of wind turbine was extracted, and the influence of uncertain wind speed on turbine power, thrust, blade flapwise bending moment and edgewise moment of wind turbine were quantified. Based on the uncertain analysis of the flow induction factors in the length direction of the blade, the uncertainty propagation mechanism in the wind turbine field was revealed, which provides a reference for the wind power system design and application. Results show that, the wind speed fluctuation has a significant influence on the wind turbine power and aerodynamic forces. The standard deviation of random Gaussian wind speed range increases from 0.05 to 0.15 times average speed, the maximum fluctuation ranges of power and thrust increase from 13.34% and 8.00% to 35.11% and 22.02%, respectively; the maximum fluctuation ranges of blade flapwise bending moment and edgewise moment increase from 7.20% and 12.84% to 19.90% and 33.49% respectively. The uncertainty of the incoming wind speed leads to the obvious fluctuation of the local flow at the blade root sections, which indicates that flow control techniques can be applied in this part of the blade to reduce the sensitivity to the uncertainty of wind speed.

     

/

返回文章
返回