EI、Scopus 收录
中文核心期刊

梯形应力脉冲在弹性杆中的传播过程和几何弥散

杨洪升, 李玉龙, 周风华

杨洪升, 李玉龙, 周风华. 梯形应力脉冲在弹性杆中的传播过程和几何弥散[J]. 力学学报, 2019, 51(6): 1820-1829. DOI: 10.6052/0459-1879-19-183
引用本文: 杨洪升, 李玉龙, 周风华. 梯形应力脉冲在弹性杆中的传播过程和几何弥散[J]. 力学学报, 2019, 51(6): 1820-1829. DOI: 10.6052/0459-1879-19-183
Yang Hongsheng, Li Yulong, Zhou Fenghua. THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829. DOI: 10.6052/0459-1879-19-183
Citation: Yang Hongsheng, Li Yulong, Zhou Fenghua. THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829. DOI: 10.6052/0459-1879-19-183
杨洪升, 李玉龙, 周风华. 梯形应力脉冲在弹性杆中的传播过程和几何弥散[J]. 力学学报, 2019, 51(6): 1820-1829. CSTR: 32045.14.0459-1879-19-183
引用本文: 杨洪升, 李玉龙, 周风华. 梯形应力脉冲在弹性杆中的传播过程和几何弥散[J]. 力学学报, 2019, 51(6): 1820-1829. CSTR: 32045.14.0459-1879-19-183
Yang Hongsheng, Li Yulong, Zhou Fenghua. THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829. CSTR: 32045.14.0459-1879-19-183
Citation: Yang Hongsheng, Li Yulong, Zhou Fenghua. THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829. CSTR: 32045.14.0459-1879-19-183

梯形应力脉冲在弹性杆中的传播过程和几何弥散

基金项目: 1) 国家自然科学基金资助项目(11390361);1) 国家自然科学基金资助项目(11932018)
详细信息
    通讯作者:

    周风华

  • 中图分类号: O347.4 +1

THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD

  • 摘要: 在应力波传播过程中,几何弥散效应往往难以避免.对应力波在弹性杆中传播的几何弥散效应进行解析分析,对于基础波动问题研究以及材料动态力学行为表征等课题,显得至关重要.本文简单说明了弹性杆中考虑横向惯性修正的一维 Rayleigh-Love应力波理论,概述了其波动控制方程的变分法推导过程;针对 Hopkinson杆实验中常用的梯形应力加载脉冲,建立了相应的偏微分方程初边值问题的求解模型,并运用 Laplace变换方法研究了脉冲在杆中传播的几何弥散现象;根据留数定理进行 Laplace反变换,给出了杆中不同位置和时刻的应力波的级数形式解析解,分析了计算项数对结果收敛性的影响;将解析计算结果与采用三维有限元数值模拟的计算结果进行对比,两者吻合程度良好,从而证明 Rayleigh-Love横向惯性修正理论可以有效地表征典型 Hopkinson杆实验中的几何弥散效应.在此基础上围绕梯形加载脉冲的弥散效应进行参数研究,定量描述了传播距离、泊松比、脉冲斜率等参数的影响.本文给出的 Rayleigh-Love杆在梯形加载条件下的解析解,揭示了几何弥散效应的本质规律,可以用于实际实验的弥散修正过程.
    Abstract: Geometric dispersion effects are often difficult to avoid during stress wave propagation. Analytical analysis of the geometric dispersion of stress wave propagation in elastic rods is crucial for the study of fundamental wave problems and the dynamic mechanical behavioral characterization of materials. This paper briefly describes the one-dimensional Rayleigh-Love stress wave theory considering the lateral inertia correction in the elastic rod, and summarizes the derivation process of the control equation by the variation method. Aiming at the trapezoidal stress loading pulse commonly used in Hopkinson rod experiments, the corresponding model of the initial boundary value problem (IBVP) of the partial differential equations is established. The geometric dispersion phenomenon of pulse propagation in the rod is studied by using the Laplace transform method. The inverse Laplace transform is carried out according to the residue theorem. The analytic solutions of the stress waves at different positions and times are given in the form of series representation. The influence of the number of calculation terms on the convergence of the results is analyzed. These analytical calculation results are in good agreement with the results using three-dimensional finite element numerical simulation, which proves that the Rayleigh-Love lateral inertia correction theory can effectively characterize the geometric dispersions in typical Hopkinson bar experiments. Based on the analytic solutions, the parametric study of the trapezoidal loading pulse is conducted. The influences of propagation distance, Poisson's ratio, and the pulse slope on the geometric dispersions are quantitatively described. The analytical solution of the Rayleigh-Love rod under trapezoidal pulse loading reveals the essential law of geometric dispersion effect and can be used for the dispersion correction process in the real experiments.
  • 1 Hudson GE. Dispersion of elastic waves in solid circular cylinders. Physical Review, 1943,63:46-51
    2 Mindlin RD, McNiven HD. Axially symmetric waves in elastic rods. Journal of Applied Mechanics, 1960,27:145-151
    3 Hutchinson JR. Vibrations of solid cylinders. Journal of Applied Mechanics, 1980,47(4):901-907
    4 Davies RM. A critical study of Hopkinson pressure bar. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948,240(821):375-457
    5 Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society B, 1949,62(11):676-700
    6 Kolsky H. Stress Waves in Solids. Oxford: Clarendon Press, 1963
    7 王礼立, 王永刚 . 应力波在用SHPB研究材料动态本构特性中的重要作用. 爆炸与冲击, 2005(1):17-25
    7 ( Wang Lili, Wang Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB. Explosion and Shock Waves, 2005(1):17-25 (in Chinese))
    8 刘孝敏, 胡时胜 . 大直径SHPB弥散效应的二维数值分析. 实验力学, 2000,15(4):371-376
    8 ( Liu Xiaomin, Hu Shisheng, Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB. Journal of Experimental Mechanics, 2000,15(4):371-376 (in Chinese))
    9 Shen Y, Yin X. Analysis of geometric dispersion effect of impact-induced transient waves in composite rod using dynamic substructure method. Applied Mathematical Modelling, 2016,40(3):1972-1988
    10 Tyas A, Watson AJ. An investigation of frequency domain dispersion correction of pressure bar signals. International Journal of Impact Engineering, 2001,25(1):87-101
    11 Pochhammer L. Uber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbergrenzten isotropen Kreiszylinder. Journal Fur Die Reine Und Angewandte Mathematik, 1876,81:324-336
    12 Chree C. The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications. Transactions of the Cambridge Philosophical Society, 1889,14:250-369
    13 Rayleigh JWS . The Theory of Sound Vol 1, 2nd Edition. London: Macmillan and Co, 1894
    14 Love AEH . A Treatise of the Mathematical Theory of Elasticity. New York: Dover Publication, 1944
    15 Krawczuk M, Grabowska J, Palacz M. Longitudinal wave propagation. Part I---Comparison of rod theories. Journal of Sound and Vibration, 2006,295(3-5):461-478
    16 Stephen NG, Lai KF, Young K, et al. Longitudinal vibrations in circular rods: A systematic approach. Journal of Sound and Vibration, 2012,331(1):107-116
    17 王礼立 . 应力波基础, 第2版. 北京: 国防工业出版社, 2005
    17 ( Wang Lili. Foundation of Stress Waves, 2nd Edition. Beijing: National Defense Industry Press, 2005 (in Chinese))
    18 Brizard D, Jacquelin E, Ronel S. Polynomial mode approximation for longitudinal wave dispersion in circular rods. Journal of Sound and Vibration, 2019,439:388-397
    19 Naitoh M, Daimaruya M. The influence of a rise time of longitudinal impact on the propagation of elastic waves in a bar. Bulletin of JSME, 1985,28:20-25
    20 Yang LM, Shim VPW. An analysis of stress uniformity in split Hopkinson bar test specimens. International Journal of Impact Engineering, 2005,31(2):129-150
    21 Follansbee PS, Frantz C. Wave propagation in the split Hopkinson pressure bar. Journal of Engineering Materials and Technology, 1983,105:61-66
    22 Gong JC, Malvern LE, Jenkins DA. Dispersion investigation in the split Hopkinson pressure bar. Journal of Engineering Materials and Technology, 1990,112:309-314
    23 Li Z, Lambros J. Determination of the dynamic response of brittle composites by the use of split Hopkinson pressure bar. Composites Science and Technology, 1999,59:1097-1107
    24 Park SW, Zhou M. Separation of elastic waves in split Hopkinson bars using one-point strain measurements. Experimental Mechanics, 1999,39(4):287-294
    25 Gama BA, Lopatnikov SL, Gillespie JW. Hopkinson bar experimental technique: A critical review. Applied Mechanics Reviews, 2004,57(4):223-250
  • 期刊类型引用(8)

    1. 李泊立,王瑞丰,陈龙洋,郭伟国. 冲击加载下材料应力应变曲线振荡现象的研究综述. 实验力学. 2024(02): 208-222 . 百度学术
    2. 吕超勇,赵翼飞,于涛. 基于两点测量对大直径杆中的正向波抵消研究. 组合机床与自动化加工技术. 2024(12): 51-56+61 . 百度学术
    3. 杨洪升,郑宇轩,周风华,李玉龙. 弹性SHPB试件内部纵向应力波传播及所产生的横向约束应力. 固体力学学报. 2023(06): 815-830 . 百度学术
    4. 叶想平,南小龙,段志伟,俞宇颖,蔡灵仓,刘仓理. 样品粗糙度对材料SHPB动态压缩性能的影响. 爆炸与冲击. 2022(01): 53-59 . 百度学术
    5. 彭克锋,郑志军,周风华,虞吉林. 密度梯度柱壳链的弹性波传播特性研究. 力学学报. 2022(08): 2131-2139 . 本站查看
    6. 戴东利,杨汉青,杨翔,何伟. 基于波动理论的结构损伤识别研究进展. 地震工程学报. 2022(05): 1001-1008 . 百度学术
    7. 彭克锋,崔世堂,潘昊,郑志军,虞吉林. 冲击载荷作用下柱壳链中的弹性波传播简化模型及其解析解. 爆炸与冲击. 2021(01): 26-36 . 百度学术
    8. 赵希宁,杨晓东,张伟. 含电学边界的压电层合梁的非线性弯曲波. 力学学报. 2021(04): 1124-1137 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1460
  • HTML全文浏览量:  198
  • PDF下载量:  212
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-07-14
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回