EI、Scopus 收录
中文核心期刊

含水合物粉质黏土压裂成缝特征实验研究

杨柳, 石富坤, 张旭辉, 鲁晓兵

杨柳, 石富坤, 张旭辉, 鲁晓兵. 含水合物粉质黏土压裂成缝特征实验研究[J]. 力学学报, 2020, 52(1): 224-234. DOI: 10.6052/0459-1879-19-179
引用本文: 杨柳, 石富坤, 张旭辉, 鲁晓兵. 含水合物粉质黏土压裂成缝特征实验研究[J]. 力学学报, 2020, 52(1): 224-234. DOI: 10.6052/0459-1879-19-179
Yang Liu, Shi Fukun, Zhang Xuhui, Lu Xiaobing. EXPERIMENTAL STUDIES ON THE PROPAGATION CHARACTERISTICS OF HYDRAULIC FRACTURE IN CLAY HYDRATE SEDIMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 224-234. DOI: 10.6052/0459-1879-19-179
Citation: Yang Liu, Shi Fukun, Zhang Xuhui, Lu Xiaobing. EXPERIMENTAL STUDIES ON THE PROPAGATION CHARACTERISTICS OF HYDRAULIC FRACTURE IN CLAY HYDRATE SEDIMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 224-234. DOI: 10.6052/0459-1879-19-179

含水合物粉质黏土压裂成缝特征实验研究

基金项目: 1) 国家自然科学基金项目(11702296);中国科学院青年创新促进会项目(2017027)
详细信息
    通讯作者:

    张旭辉

  • 中图分类号: TE348

EXPERIMENTAL STUDIES ON THE PROPAGATION CHARACTERISTICS OF HYDRAULIC FRACTURE IN CLAY HYDRATE SEDIMENT

  • 摘要: 水力压裂技术是一种重要的油气井增产、增注措施,已经广泛应用于页岩油气等非常规资源的商业开采中.目前对于粉质黏土水合物沉积物的水力压裂成缝能力尚不清楚.本文采用南海水合物沉积层的粉质黏土制备沉积物试样,并与实验室配制的粉细砂土沉积物对比,分析粉质黏土沉积物的水力成缝能力及主控因素.实验结果表明含水合物和冰的沉积物破裂压力较高,这与粉质黏土沉积物特殊的应力-应变特征和渗透性有关.当沉积物应变高于6%时, 试样强度迅速上升, 呈现应变强化的特征,对水力拉伸裂缝的扩展具有一定的阻碍作用. 粉质黏土沉积物粒径细小, 渗透性差,难以通过渗透作用传递压力, 提高了沉积层的破裂压力. 此外,粉质黏土水合物沉积层裂缝扩展存在明显延迟效应,说明裂缝扩展受到流体压力和热应力的共同影响. 适当延长注入时间,保持流体与沉积层充分接触, 会起到分解水合物、降低破裂压力的作用.该研究成果有利于深入理解水力裂缝在水合物沉积层中的扩展规律,对探索压裂技术在水合物沉积层开发中的应用具有重要意义.
    Abstract: Hydraulic fracturing technology is an important oil and gas well stimulation measure, which has been widely used in commercial development of unconventional resources such as shale oil and gas. The propagation characteristics of hydraulic fracture is not well known in hydrate sediment. In this study, the hydrate sediment samples are prepared, and the influencing factors are analyzed. The experimental results show that the breakdown pressure of hydrate sediment sample and hydrate-ice sediment sample is much larger, which is related to the special stress-strain characteristics and water permeability. When the strain of silty sediment is higher than 6%, the strength rises rapidly to present the characteristics of strain hardening. It has a certain hindrance to the expansion of hydraulic tensile fractures. The silty sediment is composed of small particle and characterized by poor permeability. It is difficult for water to rapidly transfer pressure, thereby increasing the breakdown pressure. In addition, there is a significant delay effect on the fracture propagation of silty sediment sample, indicating that the fractures extend under the combined action of fluid pressure and thermal stress. Extending the injection time contributes to heating and decomposing the hydration. The research results are helpful for understanding the propagation law of hydraulic fractures in hydrate sediments. It is of great significance to explore the application of fracturing technology in the development of hydrate sediments.
  • [1] Kvenvolden KA, Lorenson TD . The global occurrence of natural gas hydrate. Geophysical Monograph, 2001,124:3-18
    [2] 刘乐乐, 张旭辉, 刘昌岭 等. 含水合物沉积物三轴剪切试验与损伤统计分析. 力学学报, 2016,48(3):720-729
    [2] ( Liu Lele, Zhang Xuhui, Liu Changling , et al. Triaxial shear tests and statistical ananlysies of damage for methane hydrate-bearing sediments. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3):720-729 (in Chinese))
    [3] Silva JMD, Dawe R . Towards commercial gas production from hydrate deposits. Energies, 2011,4:215-238
    [4] 石要红, 张旭辉, 鲁晓兵 等. 南海水合物黏土沉积物力学特性试验模拟研究. 力学学报, 2015,47(3):521-528
    [4] ( Shi Yaohong, Zhang Xuhui, Lu Xiaobing , et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):521-528 (in Chinese))
    [5] 徐海良, 林良程, 吴万荣 等. 海底天然气水合物绞吸式开采方法研究. 中山大学学报(自然科学版), 2011,50(3):48-52
    [5] ( Xu Hailiang, Lin Liangcheng, Wu Wanrong , et al. Study on the method of seabed gas condensate suction mining. Journal of Sun Yat- sen University (Natural Science Edition), 2011,50(3):48-52 (in Chinese))
    [6] Matsukuma Y, Miwa M, Inoue G , et al. Study of recovery system of methane hydrate using gas lift method// Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada, July 6-10, 2008
    [7] Sloan ED . Clathrate Hydrates of Natural Gases. New York: Marcel Dekker, 1998.
    [8] Ginsburg GD, Soloviev VA . Methane migration within the submarine gas-hydrate stability zone under deep-water conditions. Mar Geol, 1997,137:49-57
    [9] 祝有海, 吴必豪, 卢振权 . 中国近海天然气水合物找矿前景. 矿床地质, 2001,2:174-180
    [9] ( Zhu Youhai, Wu Bihao, Lu Zhenquan . Prospects for gas hydrate prospecting in offshore China. Deposit Geology, 2001,2:174-180 (in Chinese))
    [10] 祝有海, 张永勤, 文怀军 等. 祁连山冻土区天然气水合物及其基本特征. 地球学报, 2010,31:7-16
    [10] ( Zhu Youhai, Zhang Yongqin, Wen Huaijun , et al. Natural gas hydrates and their basic characteristics in the frozen soil of Qilian Mountains. Earth Journal, 2010,31:7-16 (in Chinese))
    [11] 金春爽, 汪集旸, 张光学 . 南海天然气水合物稳定带的影响因素. 矿床地质, 2005,24:388-397
    [11] ( Jin Chunshuang, Wang Jizhen, Zhang Guang . Influencing factors of gas hydrate stability zone in the South China Sea. Deposit Geology, 2005,24:388-397 (in Chinese))
    [12] Moridis GJ, Sloan ED . Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. Energy Convers Manage, 2007,48:1834-1849
    [13] Moridis GJ, Reagan MT . Gas production from Class 2 hydrate accumulations in the permafrost// Proceedings of SPE Annual Technical Conference and Exhibition, Anaheim, 2007
    [14] McGuire PL . Recovery of gas form hydrate deposits using conventional technology //SPE Unconventional Gas Recovery Symposium, Pittsburgh, 1982
    [15] Yousif MH, Abass HH, Selim MS , et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reservoir Eng, 1991,6:69-76
    [16] 张旭辉, 鲁晓兵, 李鹏 . 天然气水合物开采方法的研究综述. 中国科学: 物理学力学天文学, 2019,49(3):38-59
    [16] ( Zhang Xuhui, Lu Xiaobing, Li Peng . Summary of research on natural gas hydrate mining methods. Chinese Science: Physics Mechanics Astronomy, 2019,49(3):38-59 (in Chinese))
    [17] 王屹, 李小森 . 天然气水合物开采技术研究进展. 新能源进展, 2013,1(1):69-79
    [17] ( Wang Wei, Li Xiaosen . Research progress in natural gas hydrate mining technology. Advance in New Energy, 2013,1(1):69-79 (in Chinese))
    [18] 张旭辉, 鲁晓兵 . 一种新的海洋浅层水合物开采法-机械-热联合开采法. 力学学报, 2016,48(5):1238-1246
    [18] ( Zhang Xuhui, Lu Xiao-bing . A new method for mining shallow ocean hydrates-mechanical-thermal combined mining method. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1238-1246 (in Chinese))
    [19] 吴传芝, 赵克斌, 孙长青 等. 天然气水合物开采技术研究进展. 地质科技情报, 2016,35(6):243-250
    [19] ( Wu Chuanzhi, Zhao Kebin, Sun Changqing , et al. Research progress in natural gas hydrate mining technology. Geological Science and Technology, 2016,35(6):243-250 (in Chinese))
    [20] 郑哲敏 . 关于天然气水合物开发工程科学研究的一点认识. 中国科学: 物理学力学天文学, 2019,49:034601 (in Chinese))
    [20] ( Zheng Zhemin . A little understanding of scientific research on natural gas hydrate development engineering. Chinese Science: Astronomy in Physics and Mechanics, 2019,49:034601 (in Chinese))
    [21] 邵茹 . 利用成对井配合水力压裂技术开采天然气水合物. 科学与技术, 2014(6):277-278
    [21] ( Shao Ru . Production of natural gas hydrate by using paired wells combined with hydraulic fracturing technology. Science and Technology, 2014(6):277-278 (in Chinese))
    [22] 祝道平, 宁正福 . 利用高能气体压裂技术开采天然气水合物可行性分析. 重庆科技学院学报: 自然科学版, 2009,11(3):37-39
    [22] ( Zhu Daoping, Ning Zhengfu . Feasibility analysis of mining natural gas hydrate using high energy gas fracturing technology. Journal of Chongqing University of Science and Technology: Natural Science Edition, 2009,11(3):37-39 (in Chinese))
    [23] Hunter RB, Collett TS, Boswell R , et al. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska north slope: Overview of scientific and technical program. Marine and Petroleum Geology, 2011,28(2):295-310
    [24] 王屹, 李小森 . 天然气水合物开采技术研究进展. 新能源进展, 2013,1(1):69-79
    [24] ( Wang Wei, Li Xiaosen . Research progress in natural gas hydrate mining technology. Advance in New Energy, 2013,1(1):69-79 (in Chinese))
    [25] 李栋梁, 樊栓狮 . 天然气水合物资源开采方法研究. 化工学报, 2003(S1):108-112
    [25] ( Li Dongliang, Fan Shuanshi . Study on mining method of natural gas hydrate resources. Journal of Chemical Industry and Engineering (China), 2003(S1):108-112 (in Chinese))
    [26] 鲁晓兵, 张旭辉, 王淑云 . 天然气水合物开采相关的安全性研究进展. 中国科学: 物理学力学天文学, 2019,49(3):7-37
    [26] ( Lu Xiaobing, Zhang Xuhui, Wang Shuyun . Research progress on safety related to natural gas hydrate exploitation. Chinese Science: Physics Mechanics Astronomy, 2019,49(3):7-37 (in Chinese))
    [27] Lu XB, Zhang XH, Wang SY . Advances in study of mechanical properties of gas hydrate bearing sediments. The Open Ocean Engineering Journal, 2013,6:26-40
    [28] 王淑云, 罗大双, 张旭辉 等. 含水合物黏土的力学性质试验研究. 实验力学, 2018,33(2):245-252
    [28] ( Wang Shuyun, Luo Dashuang, Zhang Xuhui , et al. Experimental study on mechanical properties of hydrated clay. Laboratory Mechanics, 2018,33(2):245-252 (in Chinese))
    [29] 张旭辉, 王淑云, 李清平 等. 天然气水合物沉积物力学性质的试验研究. 岩土力学, 2010,31(10):3069-3074
    [29] ( Zhang Xuhui, Wang Shuyun, Li Qingping . Experimental study on mechanical properties of natural gas hydrate deposits. Rock and Soil Mechanics, 2010,31(10):3069-3074 (in Chinese))
    [30] 韩红卫, 解飞, 汪恩良 等. 河冰三轴压缩强度特性及破坏准则试验研究. 水利学报, 2018,49(10):1199-1205
    [30] ( Han Hongwei, Xie Fei, Wang Enliang , et al. Experimental study on triaxial compression strength characteristics and failure criteria of river ice. Journal of Hydraulic Engineering, 2018,49(10):1199-1205 (in Chinese))
  • 期刊类型引用(11)

    1. 王佳琪,魏皓琦,陈燚坤,郭馨然,葛坤. 压裂强化水合物分段降压开采模拟研究. 工程热物理学报. 2024(05): 1498-1505 . 百度学术
    2. Xu-wen Qin,Cheng Lu,Ping-kang Wang,Qian-yong Liang. Hydrate phase transition and seepage mechanism during natural gas hydrates production tests in the South China Sea: A review and prospect. China Geology. 2022(02): 201-217 . 必应学术
    3. 秦绪文,陆程,王平康,梁前勇. 中国南海天然气水合物开采储层水合物相变与渗流机理:综述与展望. 中国地质. 2022(03): 749-769 . 百度学术
    4. 黄满,吴亮虹,宁伏龙,王佳贤,窦晓峰,张凌,刘天乐,蒋国盛. 天然气水合物储层改造研究进展. 天然气工业. 2022(07): 160-174 . 百度学术
    5. 孙友宏,沈奕锋,张国彪,李冰,黄峰,齐赟,单恒丰,金芳. 海底水合物储层双增改造浆液及其固结体性能. 中国石油大学学报(自然科学版). 2022(06): 1-10 . 百度学术
    6. 惠程玉,张逸群,张潘潘,武晓亚,李根生,黄浩宸. 基于径向井压裂复合降压法的天然气水合物开采产能数值模拟. 天然气工业. 2022(12): 152-164 . 百度学术
    7. 姜宗林,刘俊丽,苑朝凯,陈海璇,陆夕云. 超常环境力学领域研究新进展—–《力学学报》极端力学专题研讨会综述报告. 力学学报. 2021(02): 589-599 . 本站查看
    8. 齐赟,孙友宏,李冰,沈奕锋,张国彪,黄峰. 近井储层改造对天然气水合物藏降压开采特性影响的数值模拟研究. 钻探工程. 2021(04): 85-96 . 百度学术
    9. 徐涛,张召彬,李守定,李晓,陆程. 天然气水合物原位补热降压充填开采方法三维数值模拟研究. 工程地质学报. 2021(06): 1926-1941 . 百度学术
    10. 李淑霞,郭尚平,陈月明,张宁涛,武迪迪. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议. 力学学报. 2020(03): 828-842 . 本站查看
    11. 吴能友,李彦龙,万义钊,孙建业,黄丽,毛佩筱. 海域天然气水合物开采增产理论与技术体系展望. 天然气工业. 2020(08): 100-115 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1564
  • HTML全文浏览量:  423
  • PDF下载量:  195
  • 被引次数: 17
出版历程
  • 收稿日期:  2019-07-06
  • 刊出日期:  2020-02-09

目录

    /

    返回文章
    返回