EI、Scopus 收录
中文核心期刊
莫晃锐, 安翼, 刘青泉. 高速列车车体长度对气动噪声影响的数值研究[J]. 力学学报, 2019, 51(5): 1310-1320. DOI: 10.6052/0459-1879-19-079
引用本文: 莫晃锐, 安翼, 刘青泉. 高速列车车体长度对气动噪声影响的数值研究[J]. 力学学报, 2019, 51(5): 1310-1320. DOI: 10.6052/0459-1879-19-079
Mo Huangrui, An Yi, Liu Qingquan. INFLUENCE OF THE LENGTH OF HIGH-SPEED TRAIN ON THE FAR-FIELD AEROACOUSTICS CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1310-1320. DOI: 10.6052/0459-1879-19-079
Citation: Mo Huangrui, An Yi, Liu Qingquan. INFLUENCE OF THE LENGTH OF HIGH-SPEED TRAIN ON THE FAR-FIELD AEROACOUSTICS CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1310-1320. DOI: 10.6052/0459-1879-19-079

高速列车车体长度对气动噪声影响的数值研究

INFLUENCE OF THE LENGTH OF HIGH-SPEED TRAIN ON THE FAR-FIELD AEROACOUSTICS CHARACTERISTICS

  • 摘要: 高速列车具有细长形状, 数值评估气动噪声往往需要巨大的计算量.目前对高速列车气动噪声的数值模拟大多基于对简化短编组列车的评估,而实际列车通常具有较长的8\sim16节编组.如何基于现有条件合理评价真实长度列车的气动噪声,是一个急需探讨的问题. 本文应用非线性声学求解器(NLAS)和FW--H声学比拟法的混合算法, 先求解噪声积分面上的声场脉动,再进行远场积分, 引入多噪声面积分技术,通过对三种不同长度(3节、4节、6节)列车模型的气动性能和噪声数值模拟,分析了车体长度对列车气动噪声的影响. 结果表明,同一列车模型的各节车厢具有相似的沿线噪声分布,其噪声曲线在量值上十分接近,只是主峰位置会随着车厢空间位置的不同而相应地发生偏移;不同长度编组列车对应部位之间的远场噪声特性具有较强的关联性,它们的远场噪声具有接近的总声压级和噪声频谱.通过利用短编组计算数据进行分解、平移和叠加,成功重构了4编组和6编组列车远场噪声特性,与直接计算结果相比误差在可接受范围内.由此发展了基于短编组列车噪声的数值结果,重构长编组列车沿线噪声的近似评估方法.

     

    Abstract: The estimation of the aeroacoustic characteristics of the high-speed train is of great importance in train design. Due to the extreme slender shape of the full marshaling of the train (generally 8 or 16 cars), the calculation of the far filed acoustics involves massive consumption of the CPU time which even makes the optimization unpractical. This paper numerically studies the influence of train length on its aeroacoustics characteristics by considering the acoustic contribution car by car. The nonlinear acoustic solver (NLAS) is used to calculate the acoustic source at the acoustic surface, and the FW-H analogy method is used to integrate on the acoustic surface to obtain the far-field results. Three different marshaling of the trains, i.e. 3 cars, 4 cars, and 6 cars, are studied and compared. The far-field acoustic level and frequency profile along the train is obtained. The results show that for different middle cars, the far-field acoustic profile along the length is very similar in both quantity and shape, except the offset in position. For the cars in the same position of different marshaling, both the sound pressure level distribution and the frequency profile are also very close to each other. Thus the key aeroacoustics characteristics of a long marshaling train could be estimated with a much smaller marshaling such as 3 cars. With the superposition of the acoustic surface data from short marshaling simulation, the aeroacoustics characteristics of long marshaling could be obtained. The comparison of the superposed results and the results calculated directly from long marshaling simulation is close enough for engineering use. This demonstrates that the proposed novel approach for estimating aeroacoustics of long marshaling could not only reduce the computational cost significantly but also be as accurate as direct simulation. This paper might provide a handy tool for engineering practice in this region.

     

/

返回文章
返回