力学学报 ›› 2019, Vol. 51 ›› Issue (4): 1064-1072.DOI: 10.6052/0459-1879-19-008
俞鑫炉*,付应乾*,董新龙†,周风华†2)(),宁建国*,徐纪鹏†
收稿日期:
2019-01-05
接受日期:
2019-04-18
出版日期:
2019-07-18
发布日期:
2019-07-30
通讯作者:
周风华
基金资助:
Yu Xinlu*,Fu Yingqian*,Dong Xinlong†,Zhou Fenghua†2)(),Ning Jianguo*,Xu Jipeng†
Received:
2019-01-05
Accepted:
2019-04-18
Online:
2019-07-18
Published:
2019-07-30
Contact:
Zhou Fenghua
摘要:
基于74mm直径分离式Hopkinson杆(SHPB)实验平台进行了混凝土杆的一维应力层裂实验.采用超高速相机(采样频率:2 $\mu$s/frame)结合数字图像相关法(DIC),记录混凝土试件中的动态位移场实时变化情况,探讨了混凝土在拉伸断裂过程中的表面位移场及速度场演化规律.针对实验中出现的多重层裂现象,基于一维应力波传播理论,指出各个位置在发生层裂时,其最大拉应力均由透射压缩波与反射拉伸波叠加而成,各处层裂发生时均处于一维应力状态.并提出了根据层裂位置左右两点速度趋势变化判断层裂发生时刻的判据.该判据可以给出所有层裂的起裂时间,结合DIC分析直接给出了混凝土多重层裂应变.结果显示混凝土的拉伸强度具有明显的应变率效应,在30 s$^{-1}$的应变率下,其拉伸强度的动态增强因子(DIF)可以达到5.与传统的波叠加法和自由面速度回跳法相比,DIC全场分析法不受加载波形限制,可以精确给出每个层裂的位置和起裂时间,从而得到试件在高应变率加载下不同位置处的断裂应变、拉伸强度及相应应变率,提高了测量效率.
中图分类号:
俞鑫炉,付应乾,董新龙,周风华,宁建国,徐纪鹏. 混凝土一维应力层裂实验的全场DIC分析 1)[J]. 力学学报, 2019, 51(4): 1064-1072.
Yu Xinlu,Fu Yingqian,Dong Xinlong,Zhou Fenghua,Ning Jianguo,Xu Jipeng. FULL FIELD DIC ANALYSIS OF ONE-DIMENSIONAL SPALL STRENGTH FOR CONCRETE 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1064-1072.
[1] | 王礼立, 胡时胜, 杨黎明 等. 材料动力学. 合肥: 中国科学技术大学出版社, 2017: 227-230 |
( Wang Lili, Hu Shisheng, Yang Liming , et al. Material Dynamics. Hefei: University of Science and Technology of China of Press, 2017: 227-230(in Chinese)) | |
[2] | Reinhardt HW . Concrete under impact loading, tensile strength and bond. HERON, 1982,27(3):2-30 |
[3] | Williams MS . Odeling of local impact effects on plain and reinforced concrete. ACI Structural Journal, 1994,91(2):178-187 |
[4] | Ross CA, Tedesco JW, Kuennen ST . Effects of strain-rate on concrete strength. Aci Material Journal, 1995,92(1):37-47 |
[5] | Malvar LJ, Ross CA . Review of strain rate effects for concrete in tension. Materials Journal, 1998,95(6):735-739 |
[6] | Malvar LJ, Crawford JE . Dynamic increase factors for concrete. Naval Facilities Engineering Service Center Port hueneme CA, 1998 |
[7] |
Li QM, Meng H . About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solids and Structures, 2003,40(2):343-360
DOI URL |
[8] | Zhang QB, Zhao J . A review of dynamic experimental techniques and mechanical behavior of rock materials. Rock Mechanics and Rock Engineering, 2013,47(4):1411-1478 |
[9] | 宁建国, 周风华, 王志华 等. 强冲击载荷下钢筋混凝土的本构关系、破坏机理与数值方法. 中国科学:技术科学, 2016,46(4):323-331 |
( Ning Jianguo, Zhou Fenghua, Wang Zhihua , et al. Constitutive model, failure mechanism and numerical method for reinforced concrete under intensive impact loading. Scientia Sinica Technologica, 2016,46(4):323-331 (in Chinese)) | |
[10] |
Kipp ME, Grady DE, Chen EP . Strain-rate dependent fracture initiation. International Journal of Fracture, 1980,16(5):471-478
DOI URL |
[11] | 路德春, 李萌, 王国盛 等. 静动组合载荷下混凝土率效应机理及强度准则. 力学学报, 2017,49(4):940-952 |
( Lu Dechun, Li Meng, Wang Guosheng , et al. Study on strain rate effect and strength criterion of concrete under static-dynamic coupled loading. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):940-952 (in Chinese)) | |
[12] |
Forquin P, Luki B . On the processing of spalling experiments. Part I: Identification of the dynamic tensile strength of concrete. Journal of Dynamic Behavior of Materials, 2018,4(1):34-55
DOI URL |
[13] |
Xu H, Wen HM . Semi-empirical equations for the dynamic strength enhancement of concrete-like materials. International Journal of Impact Engineering, 2013,60:76-81
DOI URL |
[14] |
Tedesco JW, Ross CA . Strain-rate-dependent constitutive equations for concrete. Journal of Pressure Vessel Technology, 1998,120(4):398-405
DOI URL |
[15] |
Grote DL, Park SW, Zhou M . Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization. International Journal of Impact Engineering, 2001,25:869-886
DOI URL |
[16] | Al-Salloum Y, Almusallam T, Ibrahim SM , et al. Rate dependent behavior and modeling of concrete based on SHPB experiments. Cement & Concrete Composites, 2015,55:34-44 |
[17] | The International Federation for Structural Concrete. CEB FIP model code. Swit-zerland: Comite Euro-International Du Beton, 1990 |
[18] |
Katayama M, Itoh M, Tamura S , et al. Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials. International Journal of Impact Engineering, 2007,34:1546-1561
DOI URL |
[19] | Schneider SJ . Engineered Materials Handbook, Volume 4: Ceramics and Glasses. OH: ASM International, Metals Park, 1991 |
[20] |
Lambert DE, Ross CA . Strain rate effects on dynamic fracture and strength. International Journal of Impact Engineering, 2000,24(10):985-998
DOI URL |
[21] | Zhao J, Li HB . Experimental determination of dynamic tensile properties of a granite. International Journal of Rock Mechanics and Mining Sciences, 2000,5(37):861-866 |
[22] | 王启智, 李炼, 吴礼舟 等. 改进巴西试验:从平台巴西圆盘到切口巴西圆盘. 力学学报, 2017,49(4):793-801 |
( Wang Qizhi, Li Lian, Wu Lizhou , et al. Improvement of Brazilian test: From flattened Brazilian disc to grooved Brazilian disc. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):793-801(in Chinese)) | |
[23] |
Klepaczko JR, Brara A . An experimental method for dynamic tensile testing of concrete by spalling. International Journal of Impact Engineering, 2001,25(4):387-409
DOI URL |
[24] |
Schuler H, Mayrhofer C, Thoma K . Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. International Journal of Impact Engineering, 2006,32(10):1635-1650
DOI URL |
[25] |
Rey-De-Pedraza V, Cendón DA, Sánchez-Gálvez V , et al. Measurement of fracture properties of concrete at high strain rates. Philosophical Transactions of the Royal Society of London, 2017,375(2085):20160174
DOI URL |
[26] |
Zhang L, Hu SS, Chen DX , et al. An experimental technique for spalling of concrete. Experimental Mechanics, 2009,49(4):523-532
DOI URL |
[27] |
Saletti D, Forquin P . A comparison of DIC and grid measurements for processing spalling tests with the VFM and an 80-kpixel ultra-high-speed camera. The European Physical Journal Special Topics, 2016,225(2):311-323
DOI URL |
[28] |
Erzar B, Forquin P . An experimental method to determine the tensile strength of concrete at high rates of strain. Experimental Mechanics, 2010,50(7):941-955
DOI URL |
[29] |
Forquin P, Zinszner JL . A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests. Philosophical transactions - Royal Society. Mathematical, Physical and Engineering Sciences , 2017,375(2085):20160333
DOI URL |
[30] | 张磊, 胡时胜 . 混凝土层裂强度测量的新方法. 爆炸与冲击, 2006,26(6):537-542 |
( Zhang Lei, Hu Shisheng . A new method for measuring the spall strength of concrete. Explosion and Shock Waves, 2006,26(6):537-542 (in Chinese)) | |
[31] | 李天密, 张佳, 方继松 等. PMMA 膨胀环动态拉伸碎裂实验研究. 力学学报, 2018,50(4):820-827 |
( Li Tianmi, Zhang Jia, Fang Jisong , et al. Experimental study of the high velocity expansion and fragmentation of PMMA rings. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):820-827 (in Chinese)) | |
[32] | 巫绪涛, 廖礼 . 脆性材料中应力波衰减规律与层裂实验设计的数值模拟. 爆炸与冲击, 2017,37(4):705-711 |
( Wu Xutao, Liao Li . Numerical simulation of stress wave attenuation in brittle material and spalling experiment design. Explosion and Shock Waves, 2017,37(4):705-711 (in Chinese)) | |
[33] |
Xu PB, Xu H, Wen HM . 3D meso-mechanical modeling of concrete spall tests. International Journal of Impact Engineering, 2016,97:46-56
DOI URL |
[34] |
Erzar B, Forquin P . An experimental method to determine the tensile strength of concrete at high rates of strain. Experimental Mechanics, 2010,50(7):941-955
DOI URL |
[35] | Rossi P, Van MJGM, Toutlemonde F , et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension. Materials & Structures, 1994,27(5):260-264 |
[36] |
Zielinski AJ, Reinhardt HW, Körmeling HA . Experiments on concrete under uniaxial impact tensile loading. Matériaux et Construction, 1981,14(80):13-16
DOI URL |
[37] | Mellinger FM, Birkimer DL . Measurements of stress and strain on cylindrical test specimens of rock and concrete under impact loading. Cincinnati, OH: US Army Corps of Engineers, Ohio River Division Laboratories, 1966: 4-46 |
[38] | Birkimer DL . Critical normal fracture strain of Portland cement concrete. [PhD Thesis]. Cincinnati, OH: University of Cincinnati, 1968 |
[39] | Birkimer DL, Robert L . Dynamic tensile strength of concrete materials. Journal of Proceedings, 1971,68(1):47-49 |
[40] | McVay, Mark K . Spall damage of concrete structures. Vicksburg, MS: ARMY Engineer Waterways Experiment Station, MS Structures LAB, 1988 |
[41] |
Wu H, Zhang Q, Huang F , et al. Experimental and numerical investigation on the dynamic tensile strength of concrete. International Journal of Impact Engineering, 2005,32(1):605-617
DOI URL |
[42] |
Brara A, Klepaczko JR . Experimental characterization of concrete in dynamic tension. Mechanics of Materials, 2006,38(3):253-267
DOI URL |
[43] |
Erzar B, Forquin P . Experiments and mesoscopic modelling of dynamic testing of concrete. Mechanics of Materials, 2011,43(9):505-527
DOI URL |
[44] | Cowell, Walter L . Dynamic properties of plain Portland cement concrete. Port Hueneme, CA:Naval Civil Engineering Lab, 1966: 46 |
[45] | Takeda J, Tachikawa H . Deformation and fracture of concrete subjected to dynamic load// Proceeding of the Conference on Mechanical Behavior of Materials. Japan: Society of Materials Science, 1972: 77-86 |
[46] | John R, Antoun T, Rajendran AM . Effect of strain rate and size on tensile strength of concrete//Shock Compression of Condensed Matter-1991. Amsterdam: North Holland, 1992: 501-504 |
[1] | 徐纪鹏, 董新龙, 付应乾, 俞鑫炉, 周风华. 不同加载边界下混凝土巴西劈裂过程及强度的DIC实验分析1)[J]. 力学学报, 2020, 52(3): 864-876. |
[2] | 路德春, 李萌, 王国盛, 杜修力. 静动组合载荷下混凝土率效应机理及强度准则[J]. 力学学报, 2017, 49(4): 940-952. |
[3] | 赵国旗, 仇亚萍, 骆英, 冯侃. 基于细观混凝土模型的时间逆转损伤成像方法[J]. 力学学报, 2017, 49(4): 953-960. |
[4] | 刘俊, 陈林聪, 孙建桥. 随机激励下滞迟系统的稳态响应闭合解[J]. 力学学报, 2017, 49(3): 685-692. |
[5] | 邹广平, 谌赫, 唱忠良. 一种基于SHTB的II型动态断裂实验技术[J]. 力学学报, 2017, 49(1): 117-125. |
[6] | 郑开启, 刘钊, 秦顺全, 周满. 有腹筋混凝土梁的剪切刚度分析模型[J]. 力学学报, 2016, 48(5): 1136-1144. |
[7] | 万征, 姚仰平, 孟达. 复杂加载下混凝土的弹塑性本构模型[J]. 力学学报, 2016, 48(5): 1159-1171. |
[8] | 王国盛, 路德春, 杜修力, 李萌. 基于S准则发展的混凝土动态多轴强度准则[J]. 力学学报, 2016, 48(3): 636-653. |
[9] | 徐小海, 苏勇, 蔡玉龙, 程腾, 张青川. 数字图像相关法测量局域变形场中形函数和模板尺寸的影响[J]. 力学学报, 2015, 47(5): 848-862. |
[10] | 王成, 王万军, 宁建国 . 聚能装药对混凝土靶板的侵彻研究[J]. 力学学报, 2015, 47(4): 672-686. |
[11] | 陈庆, 朱合华, 闫治国, 朱建文, 邓涛, 周帅. 基于自洽法的电化学沉积修复饱和混凝土细观描述[J]. 力学学报, 2015, 47(2): 367-371. |
[12] | 丁兆东, 李杰. 基于微-细观机理的混凝土疲劳损伤本构模型[J]. 力学学报, 2014, 46(6): 911-919. |
[13] | 杜修力, 马超, 路德春. 岩土材料的非线性统一强度模型[J]. 力学学报, 2014, 46(3): 389-397. |
[14] | 王鹏飞, 徐松林, 郑航, 胡时胜. 变形模式对多孔金属材料SHPB实验结果的影响[J]. 力学学报, 2012, 44(5): 928-932. |
[15] | 梁超锋, 刘铁军, 邹笃建, 杨秋伟. 材料黏滞系数与损耗因子的频率相关性研究[J]. 力学学报, 2012, 44(5): 933-937. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||