EI、Scopus 收录
中文核心期刊

附磁压电悬臂梁流致振动俘能特性分析

曹东兴, 马鸿博, 张伟

曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析[J]. 力学学报, 2019, 51(4): 1148-1155. DOI: 10.6052/0459-1879-18-426
引用本文: 曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析[J]. 力学学报, 2019, 51(4): 1148-1155. DOI: 10.6052/0459-1879-18-426
Cao Dongxing, Ma Hongbo, Zhang Wei. ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155. DOI: 10.6052/0459-1879-18-426
Citation: Cao Dongxing, Ma Hongbo, Zhang Wei. ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155. DOI: 10.6052/0459-1879-18-426
曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析[J]. 力学学报, 2019, 51(4): 1148-1155. CSTR: 32045.14.0459-1879-18-426
引用本文: 曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析[J]. 力学学报, 2019, 51(4): 1148-1155. CSTR: 32045.14.0459-1879-18-426
Cao Dongxing, Ma Hongbo, Zhang Wei. ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155. CSTR: 32045.14.0459-1879-18-426
Citation: Cao Dongxing, Ma Hongbo, Zhang Wei. ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155. CSTR: 32045.14.0459-1879-18-426

附磁压电悬臂梁流致振动俘能特性分析

基金项目: 1)国家自然科学基金项目(11672008);国家自然科学基金重点项目(11832002)
详细信息
    通讯作者:

    曹东兴

  • 中图分类号: O322

ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION

  • 摘要: 流致振动蕴含巨大的能量, 本文基于流致振动理论,设计了一种附加磁力激励的压电悬臂梁流致振动俘能器,并通过理论和实验研究其振动俘能特性.该俘能器由压电悬臂梁、圆柱绕流体和磁铁组成;首先基于Euler-Bernoulli梁理论,推导了流致振动附磁压电俘能器的能量函数,利用Hamilton原理建立了流致振动附磁压电俘能器的机电耦合方程;利用数值方法研究详细分析了流速、圆柱绕流体直径和长度、磁间距、磁极和外接电阻等系统参数对压电俘能器振动特性和输出电压的影响.分析结果表明, 该型压电俘能器的振动幅值在低流速条件下产生涡激振动,并产生最大的输出电压;磁力可以降低压电俘能器的共振频率并能够拓宽压电俘能器频带带宽,因此,附磁压电俘能器具有相比没有附磁的压电俘能器更适用于低速层流环境;实验结果与数值结果吻合较好,验证了附磁压电悬臂梁流致振动俘能器的理论分析的正确性.
    Abstract: Flow-induced vibration contains tremendous energy. Based on the theory of flow-induced vibration, a kind of flow-induced vibration energy harvester with additional magnetic excitation is designed, and its vibration energy harvesting characteristics are studied theoretically and experimentally. The harvester consists of a piezoelectric cantilever beam, a circular cylinder and magnets. Firstly, based on the Euler-Bernoulli beam theory, the energy functions of the magneto-piezoelectric energy harvester with fluid-induced vibration excitation are derived, and the electromechanical coupling equation is established by using the Hamilton principle. Then, the influence of the system parameters such as the flow velocity, the diameter and length of the circular cylinder, the magnetic parameters and the external resistance on the vibration characteristics and output voltage of the piezoelectric energy harvester. The results show that the vibration amplitude of the piezoelectric harvester produces vortex-induced vibration at low flow velocity and output the maximum voltage; the magnetic force can reduce the resonance frequency of the structure and broaden the bandwidth harvester. Thus, the magnetized piezoelectric harvester is more suitable for low-speed flow environment than the non-magnetized piezoelectric harvester. The experimental results agree well with the numerical results, which verifies the results of the theoretical analysis of the magneto-piezoelectric energy harvester.
  • [1] Erturk A, Hoffmann J, Inman DJ . A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009,94(25):254102
    [2] Ooi BL, Gilbert JM, Aziz ARA . Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications. Acta Mechanica Sinica, 2016,32(4):670-683
    [3] Sun S, Cao SQ . Analysis of chaos behaviors of a bistable piezoelectric cantilever power generation system by the second-order Melnikov function. Acta Mechanica Sinica, 2017,33(1):200-207
    [4] Zhou S, Zuo L . Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 2018,61:271-284
    [5] Zhou S, Cao J, Inman DJ , et al. Broadband tristable energy harvester: Modeling and experiment verification. Applied Energy, 2014,133:33-39
    [6] Zou H, Zhang W, Li W , et al. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments. Journal of Sound and Vibration, 2018,416:55-79
    [7] Zou H, Zhang W, Li W , et al. Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester. Smart Materials and Structures, 2017,26(11):115023
    [8] Lu Z, Li K, Ding H , et al. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics, 2018,40(1):167-180
    [9] Liu D, Xu Y, Li JL . Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos Solitons & Fractals, 2017,104:806-812
    [10] Jiang WA, Chen LQ, Ding H . Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dynamics, 2016,85(4):2507-2520
    [11] Cao DX, Leadenham S, Erturk A . Internal resonance for nonlinear vibration energy harvesting. European Physical Journal-Special Topics, 2015,224(14-15):2867-2880
    [12] Fang F, Xia G, Wang J . Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mechanica Sinica, 2018,34(3):561-577
    [13] Wu N, Wang Q, Xie XD . Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl Ocean Res, 2015,50:110-118
    [14] Michelin S, Doar O . Energy harvesting efficiency of piezoelectric flags in axial flows. J Fluid Mech, 2013,714(1):489-504
    [15] Gao X, Shih WH, Wan YS . Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE T Ind Electron, 2013,60(3):1116-1118
    [16] 宋汝君, 单小彪, 李晋哲 等. 压电俘能器涡激振动俘能的建模与实验研究. 西安交通大学学报, 2016,50(2):55-60,79
    [16] ( Song Rujun, Shan Xiaobian, Li Jinzhe , et al. Modeling and experimental study of piezoelectric energy harvester under vortex-induced vibration. Journal of Xi'an Jiaotong University. 2016,50(2):55-60, 79 (in Chinese))
    [17] Dai HL, Abdelkefi A, Wang l . Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dynam, 2014,77(3):967-981
    [18] 阚君武, 富佳伟, 王淑云 等. 涡激振动式微型流体俘能器的研究现状与展望. 光学精密工程, 2017,25(6):1502-1512
    [18] ( Kan Junwu, Fu Jiawei, Wang Shuyun , et al. Research status and prospect of vortex-induced vibration micro-fluid energy harvester. Optics and Precision Engineering. 2017,25(6):1502-1512 (in Chinese))
    [19] 练继建, 燕翔, 刘昉 . 流致振动能量利用的研究现状与展望. 南水北调与水利科技, 2018,16(1):176-189
    [19] ( Lian Jijian, Yan Xiang, Liu Fang . Development and prospect of study on the energy harness of flow-induced motion. South to North Water Transfers and Water Science & Technology, 2018,16(1):176-189 (in Chinese))
    [20] Weinstein LA, Cacan MR, SO PM , et al. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows. Smart Materials & Structures, 2012, 21(21): 45003-12(10)
    [21] Zhang M, Wang JL . Experimental study on piezoelectric energy harvesting from vortex-Induced vibrations and wake-induced vibrations. Journal of Sensors, 2016: 2673292
    [22] Ding L, Zhang L, Wu CM , et al. Flow induced motion and energy harvesting of bluff bodies with different cross sections. Energy Conversion And Management, 2015,91:416-426
    [23] Nicolaskofman L . The origin of hysteresis in the flag instability. Journal of Fluid Mechanics, 2012,691(1):583-593
    [24] Vicente-ludlam D, Barrero-gil A, Velazquez A . Optimal electromagnetic energy extraction from transverse galloping. Journal of Fluids & Structures, 2014,51:281-291
    [25] Javed U, Abdelkefi A, Akhtar I . An improved stability characterization for aeroelastic energy harvesting applications. Communications in Nonlinear Science & Numerical Simulation, 2016,36:252-265
    [26] Pobering S, Schwesinger N . A novel hydropower harvesting device //Proceedings of the International Conference on Mems, Nano and Smart Systems, F, 2004
    [27] Xie XD, Wang Q, Wu N . Energy harvesting from transverse ocean waves by a piezoelectric plate. International Journal of Engineering Science, 2014,81(81):41-48
    [28] Shan X, Song R, Liu B , et al. Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex. Ceramics International, 2015,41:S763-S7
    [29] Shan X, Deng J, Song R , et al. A piezoelectric energy harvester with bending-torsion vibration in low-speed water. Applied Sciences, 2017,7(2):116
    [30] 宋汝君, 单小彪, 范梦龙 等, 涡激振动型水力复摆式压电俘能器的仿真与实验研究. 振动与冲击, 2017,36(19):78-83
    [30] ( Song Rujun, Shan Xiaobiao, Fan Menglong , et al. Simulations and experiments on a hydrodynamic compound pendulum piezoelectric energy harvester accompanied with vortex-induced vibration. Journal of Vibration and Shock, 2017,36(19):78-83 (in Chinese))
    [31] Tang D, Zhao M, Dowell EH . Inextensible beam and plate theory: Computational analysis and comparison with experiment. Journal of Applied Mechanics, 2014,81(6):061009
    [32] Huang YH, Hsu HT . Solid-liquid coupled vibration characteristics of piezoelectric hydroacoustic devices. Sensors & Actuators A Physical, 2016,238:177-195
    [33] Basak S, Raman A, Garimella SV . Hydrodynamic loading of microcantilevers vibrating in viscous fluids. Journal of Applied Physics, 2006,99(11):2454-198
    [34] Abdelkefi A, Barsallo N . Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters. Nonlinear Dynam, 2016,83(1-2):1-16
  • 期刊类型引用(19)

    1. 张飞. 基于压电微悬臂梁的煤矿巷道风速检测仿真研究. 煤矿机械. 2023(03): 55-57 . 百度学术
    2. 张野,王军雷. 基于翅片超表面钝体的流致振动俘能特性研究. 力学学报. 2023(10): 2199-2216 . 本站查看
    3. 张晓宇,张旭辉. 矿用压电俘能器建模与俘能特性研究. 力学学报. 2023(10): 2239-2251 . 本站查看
    4. 施海天,魏莎,丁虎,陈立群. Z型梁结构压电式能量采集性能分析. 振动与冲击. 2022(04): 93-100 . 百度学术
    5. 张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 . 本站查看
    6. 吴子英,常宇琛,赵伟,李永越,刘丽兰. 三稳态电磁式涡激振动俘能装置发电性能研究. 振动与冲击. 2022(13): 26-33 . 百度学术
    7. 钱有华,陈娅昵. 双稳态压电俘能器的簇发振荡与俘能效率分析. 力学学报. 2022(11): 3157-3168 . 本站查看
    8. 董博见,徐鹏,李海涛. 驰振和基振复合作用下的双稳态能量采集系统动力学分析. 中北大学学报(自然科学版). 2021(01): 26-33+39 . 百度学术
    9. 卢一铭,曹东兴,申永军,陈许敏. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究. 力学学报. 2021(04): 1114-1123 . 本站查看
    10. 常宇琛,吴子英. 考虑线性/非线性恢复力的流致振动能量捕获技术研究进展. 机械设计. 2021(09): 1-14 . 百度学术
    11. 陈楠,刘京睿,魏廷存. 面向压电振动能量俘获的电能管理电路综述. 力学学报. 2021(11): 2928-2940 . 本站查看
    12. 田海港,单小彪,张居彬,隋广东,谢涛. 翼型颤振压电俘能器的输出特性研究. 力学学报. 2021(11): 3016-3024 . 本站查看
    13. 李海涛,曹帆,任和,丁虎,陈立群. 流致振动能量收集的钝头体几何设计研究. 力学学报. 2021(11): 3007-3015 . 本站查看
    14. 张旭辉,陈路阳,陈孝玉,徐冬梅,朱福林,郭岩. 线形-拱形组合梁式三稳态压电俘能器动力学特性研究. 力学学报. 2021(11): 2996-3006 . 本站查看
    15. 刘轩,吴义鹏,裘进浩,季宏丽. 基于反激变压器的压电振动能量双向操控技术. 力学学报. 2021(11): 3045-3055 . 本站查看
    16. 曹东兴,段祥健,张伟. 水流管道压力脉动能量采集器实验研究. 哈尔滨工程大学学报. 2021(08): 1154-1161 . 百度学术
    17. 张德春,李鹏,梁森,杨翊仁. 受限亚音速气流中倒置悬臂壁板静气弹稳定性的理论及实验研究. 力学学报. 2020(02): 431-441 . 本站查看
    18. 刘星光,唐有绮,周远. 三种典型轴向运动结构的振动特性对比. 力学学报. 2020(02): 522-532 . 本站查看
    30. 曹东兴,丁相栋,张伟,姚明辉. 磁力增强涡激振动压电俘能器仿真及实验. 振动.测试与诊断. 2022(03): 530-536+619 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  1494
  • HTML全文浏览量:  211
  • PDF下载量:  231
  • 被引次数: 30
出版历程
  • 收稿日期:  2018-12-09
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回