TUNNEL SUPPORT STRUCTURE SYSTEM AND ITS SYNERGISTIC EFFECT
-
摘要: 隧道支护结构体系是围岩稳定性控制的关键,也是隧道设计的基本任务,而对支护结构之间相互作用过程和机制的系统认识则是定量化设计的基础. 本文从隧道围岩结构性和支护作用的本质特征出发,提出隧道支护具有"调动"和"协助"围岩承载的基本作用,明确了二者的功能分配原则和实现方式,即分别通过超前支护的保障作用、初期支护的核心作用和二次衬砌的安全储备作用共同完成;针对围岩的正面挤出、前倾式冒落和后倾式冒落等三种超前破坏模式,分别给出了相应的超前支护方式和支护效果评价方法;提出初期支护作为隧道围岩附加载荷的主要承担者,包括锚固体系与拱架及喷射混凝土结构,分别通过"调动"和"协助"围岩实现其承载功能,且同时具有"支"与"护"的作用;阐明了二次衬砌结构作为安全储备功能的内涵,建立了二次衬砌结构的载荷分担比率与刚度匹配性、支护时机的关系,并据此给出了二次衬砌结构参数和施作时机的建议值;建立了以围岩变形量$S$最小和协同度$\xi$最优为目标,基于超前支护、初期支护和二次衬砌与围岩相互作用三阶段的协同支护优化模型,明确了支护结构体系与围岩、不同支护结构之间以及支护结构要素之间三个层次的协同关系,并提出了隧道支护结构体系协同优化设计方法.
-
关键词:
- 隧道工程 /
- 支护结构体系 /
- "支护——围岩"动态作用 /
- 协同作用 /
- 支护结构设计
Abstract: Tunnel support structure system is the key of controlling the stability of surrounding rock, which is also the basic task of tunnel design, while systemic understanding of the process and mechanism of interaction among support structures is the basis of quantitative design. This paper embarks from structural property of tunnel surrounding rock and the constitutive property of support effect, the basic function of tunnel support that "mobilizing" and "assisting" surrounding rock bearing is put forward, of which the function distribution principle and realization way are clarified, namely, through the guarantee role of advanced support, the core role of primary support and safety reserve role of secondary lining to complete. In view of three advanced failure modes including the positive extrusion, the forward type caving and posterior tilt falling of surrounding rock, the corresponding advanced support pattern and its effect evaluation method are given respectively. The primary support is the main undertaker of tunnel surrounding rock additional load, including the anchorage system and the arch and shotcrete structure, whose bearing function is carried out by "mobilizing" and "assisting" surrounding rock respectively, and also have the function of "bracing" and "protecting". The connotation of secondary lining structure as security reserve function is illuminated. The relationship between load sharing ratio and stiffness matching and support time of secondary lining structure is established, according to which the suggestive values of structure parameters and support time of secondary lining are provided. The collaborative support optimization model is set up based on the three stages of the interaction between advanced support, primary support, secondary lining and surrounding rock, whose targets are minimizing surrounding rock deformation S and optimizing synergy degreeξ. Three levels of synergy including relations between support structure system and surrounding rock, different support structures and different support structure elements are clarified. And a collaborative optimization design method for tunnel support structure is proposed. -
-
[1] Lunardi P. 隧道设计与施工——岩土控制变形分析法. 北京: 中国铁道出版社, 2011 [1] ( Lunardi P. Design and Construction of Tunnels Analysis of Controlled Deformation in Rock and Soils. Beijing: China Railway Publishing House, 2011 (in Chinese)) [2] Terzaghi K . Rock defects and loads in tunnel supports//Rock Tunneling With Steel Supports. Youngstown, Ohio: The Commercial Shearing and Stamping Co., 2004: 17-99 [3] Oreste PP . A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports. Tunnelling and Underground Space Technology, 2007,22:185-205 [4] Hoek E, Carranza-Torres C, Diederichs M , et al. Integration of geotechnical and structural design in tunneling(C)//The 56th Annual Geotechnical Engineering Conference, Minneapolis: University of Minnesota, 2008: 1-53 [5] 张顶立 . 隧道及地下工程的基本问题及其研究进展. 力学学报, 2017,49(1):1-19 [5] ( Zhang Dingli . Essential issues and their research progress in tunnel and underground engineering. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):1-19 (in Chinese)) [6] 张顶立, 陈立平 . 隧道围岩的复合结构特性及其载荷效应. 岩石力学与工程学报, 2016,35(3):456-469 [6] ( Zhang Dingli, Chen Liping . Compound structural characteristics and load effect of tunnel surrounding rock. Chinese Journal of Rock Mechanics and Engineering, 2016,35(3):456-469 (in Chinese)) [7] 张顶立, 台启民, 房倩 . 复杂隧道围岩安全性及其评价方法. 岩石力学与工程学报, 2017,36(2):270-296 [7] ( Zhang Dingli, Tai Qimin, Fang Qian . Safety of complex surrounding rock of tunnels and related evaluation method. Chinese Journal of Rock Mechanics and Engineering, 2017,36(2):270-296 (in Chinese)) [8] 孙振宇, 张顶立, 房倩 等. 基于超前加固的深埋隧道围岩力学特性研究. 工程力学, 2018,35(2):92-104 [8] ( Sun Zhenyu, Zhang Dingli, Fang Qian , et al. Research on the mechanical property of the surrounding rock of deep-buried tunnel based on the advanced reinforcement. Engineering Mechanics, 2018,35(2):92-104 (in Chinese)) [9] 张顶立, 孙振宇 . 复杂隧道围岩结构稳定性及其控制. 水力发电学报, 2018,37(2):1-11 [9] ( Zhang Dingli, Sun Zhenyu . Structural stability of complex tunnel surrounding rock and its control. Journal of Hydroelectric Engineering, 2018,37(2):1-11 (in Chinese)) [10] 孙振宇, 张顶立, 房倩 等. 隧道初期支护与围岩相互作用的时空演化特性. 岩石力学与工程学报, 2017,36(增2):3943-3956 [10] ( Sun Zhenyu, Zhang Dingli, Fang Qian , et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock. Chinese Journal Of Rock Mechanics And Engineering, 2017,36(Supp.2):3943-3956 (in Chinese)) [11] Panet M. Le Calcul Des Tunnels Par La Methode Convergence-Confinement. Paris: Press de iecole Nationale des Ponts et Chaussres, 1995: 75-100 [12] Carranza-Torres C, Fairhurst C . Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunnelling and Underground Space Technology, 2000,15(2):187-213 [13] 邹金锋, 李帅帅, 张勇 等. 考虑轴向力和渗透力时软化围岩隧道解析. 力学学报, 2014,46(5):747-755 [13] ( Zou Jinfeng, Li Shuaishuai, Zhang Yong , et al. Solution and analysis of circular tunnel for the strain-softening rock masses considering the axial in situ stress and seepage force. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(5):747-755 (in Chinese)) [14] 何川, 齐春, 封坤 等 . 基于 D-P 准则的盾构隧道围岩与衬砌结构相互作用分析. 力学学报, 2017,49(1):31-40 [14] ( He Chuan, Qi Chun, Feng Kun , et al. Theoretical analysis of interaction between surrounding rocks and lining structure of shield tunnel based on Drucker-Prager yield criteria. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):31-40 (in Chinese)) [15] Carranza-Torres C, Fairhurst C . The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 1999,36(6):777-809 [16] Hoek E, Brown ET . Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 1997,34(8):1165-1187 [17] 蔡美峰, 何满潮, 刘东燕 . 岩石力学与工程. 北京: 科学出版社, 2002: 310-311 [17] ( Cai Meifeng, He Manchao, Liu Dongyan. Rock Mechanics and Engineering. Beijing: Science Press, 2002: 325-326(in Chinese)) [18] Park KH, Tonavanich B, Lee JG . A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock mass. Tunneling and Underground Space Technology, 2008,23(2):151-159 [19] 黄红选, 韩继业 . 数学规划 . 北京:清华大学出版社, 2006 [19] ( Huang Hongxuan, Han Jiye . Mathematical Programming. Beijing: Tsinghua University Press, 2006 (in Chinese)) [20] 台启民, 张顶立, 房倩 等. 软弱破碎围岩隧道超前支护确定方法. 岩石力学与工程学报, 2016,35(1):109-118 [20] ( Tai Qimin, Zhang Dingli, Fang Qian , et al. Determination of advance supports in tunnel construction under unfavourable rock conditions. Chinese Journal of Rock Mechanics and Engineering, 2016,35(1):109-118 (in Chinese)) [21] Oreste PP . Analysis of structural interaction in tunnels using the convergence-confinement approach. Tunnelling and Underground Space Technology, 2003,13(2):347-363 [22] 赵勇, 刘建友, 田四明 . 深埋隧道软弱围岩支护体系受力特征的试验研究. 岩石力学与工程学报, 2011,30(8):1663-1670 [22] ( Zhao Yong, Liu Jianyou, Tian Siming . Experimental study of mechanical characteristics of support system for weak surrounding rock of deep tunnels. Chinese Journal of Rock Mechanics and Engineering, 2011,30(8):1663-1670 (in Chinese)) [23] 许树柏 . 实用决策方法——层次分析法原理. 天津: 天津大学出版社, 1988: 8-12 [23] ( Xu Shubai. Use of Decision Method-Analytic Hierarchy Process. Tianjin: Tianjin University Press, 1988: 8-12(in Chinese)) [24] 孙毅 . 隧道支护体系的承载特性及协同作用原理. [博士论文]. 北京:北京交通大学, 2016 [24] ( Sun Yi . Bearing characteristics and synergy principle of tunnel supporting system. [PhD Thesis]. Beijing:Beijing Jiaotong University, 2016 (in Chinese)) [25] 孙振宇, 张顶立, 房倩 等. 浅埋小净距公路隧道围岩压力分布规律. 中国公路学报, 2018,31(9):84-94 [25] ( Sun Zhenyu, Zhang Dingli, Fang Qian , et al. Distribution of surrounding rock pressure of shallow highway tunnels with small spacing. China Journal of Highway and Transport, 2018,31(9):84-94 (in Chinese)) -
期刊类型引用(52)
1. 周振梁,谭忠盛,李林峰,雷可. TBM隧道围岩-支护动态相互作用机制研究. 铁道科学与工程学报. 2025(01): 284-294 . 百度学术
2. 杨宝,邢亚鹏,陈维敏. 基于荷载调节控制技术的隧道低碳建设新方向. 交通节能与环保. 2025(01): 246-250 . 百度学术
3. 梁译文,查文华,许涛,刘造保,刘小虎. 基于Mohr-Coulomb准则隧道围岩-支护体系协同作用下支护强度分析. 科学技术与工程. 2024(01): 378-385 . 百度学术
4. 王守慧,梅玉春,刘泉维,李为腾,殷险峰,王刚,李文蓄,王绪勇,秦哲,杨旭旭,冯强,张朔. 浅埋大跨岩质隧道主动支护作用机制研究与应用. 中国铁道科学. 2024(01): 131-141 . 百度学术
5. 尹恒. 中空注浆锚杆在浅埋暗挖法隧道中的应用与参数优化研究. 交通科技与管理. 2024(04): 74-77 . 百度学术
6. 蒲自俊. 隧道大变形控制及支护方式探究. 大众标准化. 2024(05): 72-74 . 百度学术
7. 赵勇,王明年,于丽,张霄. 中国隧道支护结构设计理论及方法发展与展望. 现代隧道技术. 2024(02): 28-42+79 . 百度学术
8. 余涛,罗虎,姜逸帆,姚志刚,李梦可,方勇. 软弱破碎围岩地层预应力管–索结构的提出及应用. 岩石力学与工程学报. 2024(06): 1505-1518 . 百度学术
9. 路军富,李旻昊,冉迅,陈龙. 隧道支护工字型钢与喷射混凝土粘结滑移性能研究. 工程力学. 2024(09): 167-178 . 百度学术
10. 孙龙,刘建文,刘征洋. 隧道主动支护联合被动支护体系关键施工技术研究. 交通科技与管理. 2024(19): 105-108 . 百度学术
11. 黄震. 隧道钢管混凝土复合结构力学性能研究. 铁道建筑技术. 2024(12): 178-181+206 . 百度学术
12. 张顶立,孙振宇,陶伟明. 隧道围岩大变形灾害特点与主动控制方法. 铁道标准设计. 2023(01): 1-9 . 百度学术
13. 倪政东. 锚杆初级支护在花岗岩边坡加固中的作用研究. 福建建设科技. 2023(01): 59-63 . 百度学术
14. 来弘鹏,赵铭坤,刘禹阳,洪秋阳,黄鹏志,沈鹏翔. 基于实测数据的穿越软塑黄土层大断面隧道围岩与支护动态作用机制. 交通运输工程学报. 2023(01): 115-131 . 百度学术
15. 姚志雄,刘梦飞,吴波,刘耀星,陈希茂,郑国文,罗芷祎. 基于承载特性的群洞稳定性及初期支护优化研究. 现代隧道技术. 2023(01): 119-129 . 百度学术
16. 吕刚,梁文灏,刘建友,岳岭. 深埋隧道围岩应力圈层传递理论及支护体系设计方法. 铁道标准设计. 2023(04): 1-6 . 百度学术
17. 李金奎,任恒. 城市地下通道交叉中隔墙法超前支护小导管的参数优化分析. 城市轨道交通研究. 2023(07): 76-81 . 百度学术
18. 赵南南,邵珠山,郑晓蒙,吴奎,秦溯. 考虑锚杆作用的深埋软岩隧道黏弹塑性力学响应解析. 力学学报. 2022(02): 445-458 . 本站查看
19. 闻毓民,信春雷,申玉生,黄泽明,高波. 隧道衬砌结构减震层效能评定方法的振动台试验研究. 振动与冲击. 2022(05): 197-207 . 百度学术
20. 侯伟,张露晨,王子方,王鹏程,王修伟. 纤维喷射混凝土硬化对隧道围岩的支护作用. 山东交通学院学报. 2022(02): 81-88 . 百度学术
21. 肖景红,王敏,冷先伦,王川,陈国良. 岗岭隧道穿越破碎带的衬砌结构性能研究. 公路. 2022(03): 336-342 . 百度学术
22. 马伟斌. 铁路山岭隧道钻爆法关键技术发展及展望. 铁道学报. 2022(03): 64-85 . 百度学术
23. 王永林. 浅埋偏压隧道超前支护方式比选与非对称优化分析. 铁道建筑技术. 2022(05): 159-163 . 百度学术
24. 金波,胡明,方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究. 力学学报. 2022(05): 1322-1330 . 本站查看
25. 孙振宇,张顶立,刘道平,侯艳娟,李奥. 锚固体系作用下隧道围岩力学响应的全过程解析. 工程力学. 2022(07): 170-182 . 百度学术
26. 经纬,陈洪恩,杨仁树,经来旺,薛维培,王福奇. 基于岩石蠕变及D-P准则的深部巷道围岩弹塑性分析. 力学学报. 2022(07): 1982-1993 . 本站查看
27. 尚福强,鲁成勃,唐小强,袁强. 复杂地质条件下特大断面水工隧洞开挖施工技术分析——以乌鲁木齐绕城高速(西线)工程为例. 工程技术研究. 2022(16): 54-56 . 百度学术
28. 王嘉琛,张顶立,孙振宇,方黄城,刘昌. 水平互层围岩隧道破坏机理及其范围预测模型. 力学学报. 2022(10): 2835-2849 . 本站查看
29. 谭涛,成晶华,曾晓天,叶朝坤,张蓓. 公路隧道衬砌结构数值模拟分析. 黑龙江交通科技. 2022(10): 124-126 . 百度学术
30. 李深远. TBM钢拱架自动输送系统研究与实践. 建筑机械化. 2022(11): 25-28 . 百度学术
31. 赵昌杰,饶军应,熊鹏,王亚奇,陈忆. 基于特征曲线法的围岩-支护系统安全性分析. 水利规划与设计. 2022(11): 158-167 . 百度学术
32. 彭鹏,彭峰,孙振宇,张顶立. 基于分形理论和Mori-Tanaka方法的颗粒土渗透注浆加固体性能预测方法及应用. 力学学报. 2022(11): 3099-3112 . 本站查看
33. 阿拉坦吐力古尔. 挂网锚喷支护在围岩隧洞支护中的应用. 河南水利与南水北调. 2022(10): 46-48 . 百度学术
34. 刘军,常舒,杨志男,韩旭. 新型隧道支护体系钢架选型对比试验研究. 铁道标准设计. 2021(02): 116-122 . 百度学术
35. 张顶立,方黄城,陈立平,孙振宇. 隧道支护结构体系的刚度设计理论. 岩石力学与工程学报. 2021(04): 649-662 . 百度学术
36. 孙振宇,张顶立,房倩,侯艳娟. 隧道支护结构体系协同优化设计方法及其应用. 岩土工程学报. 2021(03): 530-539 . 百度学术
37. 苗立业. 二次衬砌支护参数对围岩稳定性影响分析. 东北水利水电. 2021(04): 48-50+72 . 百度学术
38. 周建,杨新安,蔡键,杨帆. 深埋隧道复合式衬砌承载规律及其力学解答. 岩石力学与工程学报. 2021(05): 1009-1021 . 百度学术
39. 孙振宇,张顶立,侯艳娟,李奥. 基于现场实测数据统计的隧道围岩全过程变形规律及稳定性判据确定. 岩土工程学报. 2021(07): 1261-1270+1376-1377 . 百度学术
40. 李浩,王立彬,王飞球,李照众. 高铁隧道支护参数多目标优化研究. 林业工程学报. 2021(05): 169-175 . 百度学术
41. 邢立志. 分离式隧道围岩支护稳定性控制研究. 工程机械与维修. 2021(05): 192-195 . 百度学术
42. 吴波,吴兵兵,黄惟. 隧道支护技术研究进展. 施工技术(中英文). 2021(17): 74-79+86 . 百度学术
43. 林裕. Ⅴ级围岩超大断面隧道超前支护优化分析. 市政技术. 2021(12): 76-83+89 . 百度学术
44. 尹崇林,吕爱钟. 水工圆形隧洞围岩衬砌摩擦滑动接触的新解法. 力学学报. 2020(01): 247-257 . 本站查看
45. 刘军,杨志男,王利民,高辛财,韩旭. 新型隧道结构纵向连接筋对支护性能影响研究. 铁道标准设计. 2020(04): 111-117 . 百度学术
46. 吴奎,邵珠山,秦溯. 流变岩体中让压支护作用下隧道力学行为研究. 力学学报. 2020(03): 890-900 . 本站查看
47. 刘少伟,王伟,付孟雄,梁文彬,卓军. 螺纹钢锚杆搅拌锚固剂力学特征分析与端部形态优化实验. 中国矿业大学学报. 2020(03): 419-427 . 百度学术
48. 郝亚勋,罗许林,王美英. 软岩隧道围岩加固及支护技术模拟分析. 中原工学院学报. 2020(04): 40-46 . 百度学术
49. 汪波,喻炜,刘锦超,王振宇,徐建强,吴德兴. 交通/水工隧道中基于预应力锚固系统的及时主动支护理念及其技术实现. 中国公路学报. 2020(12): 118-129 . 百度学术
50. 杨长生. 四川省绵茂路篮家岩隧道支护设计方案. 山东工业技术. 2019(11): 82-83 . 百度学术
51. 姜浩,姜亮亮. 小导管超前支护技术在隧道浅埋暗挖法施工中的应用. 低温建筑技术. 2019(03): 86-88 . 百度学术
52. 饶军应,谢财进,赵霞,刘灯凯,聂崇欣,刘宁. 深埋隧洞三岔口围岩稳定性计算理论. 中南大学学报(自然科学版). 2019(08): 1949-1959 . 百度学术
其他类型引用(50)
计量
- 文章访问数: 3371
- HTML全文浏览量: 556
- PDF下载量: 261
- 被引次数: 102